IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Exploring the influence of terroir on the sensorial and aroma profiles of wines – An application to red wines from AOC Corbières

Abstract

The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.The aromatic profile of a wine is the result of volatile molecules present in grapes (varietal or primary aromas) and those produced during the winemaking process of fermentation (secondary aromas) and during wine aging (tertiary aromas). Depending on their concentrations and interactions with other molecules, aromatic compounds contribute, to different extents, to the final bouquet of the wines. The analysis of the profile of volatile compounds of a wine can help exploring the chemical link between the product and the terroir from which it originates. Indeed, when referring to the concept of terroir, grape variety expression in wine results from an interaction between the place (climate, soil) and the people (tradition, viticultural practices and winemaking) [2,3]. These parameters can influence the final concentration of aromas, thus contributing to the overall sensory perception. To explore the influence of “terroir” factors on the aromatic and sensory profile of wines, red wines from the AOC Corbières were subjected to a global aromatic and sensory analysis. The aim is to identify the “molecular markers” that can characterise the different wines and to assess whether these markers are related to each other and explained by their area of origin. The aromatic profile was evaluated by HS-SPME-GC-MS and the sensory analysis was performed by a QDA (Quantitative Descriptive Analysis) profile method.  The terroir and winemaking parameters (type of winemaking, yeast, blending) were considered and multifactorial analysis were performed to link these data to the aromatic and/or sensory profiles. Statistical analysis highlight differences either between the samples and the study areas. Differences in the aroma profile were mainly attributed to some fermentative (e.g. acetate and ethyl esters) and varietal (e.g. terpenols and C13-norisoprenoids) aromas. Sensory analysis showed significant differences between samples on some quality descriptors (e.g. cooked red fruit). New interpretation leads are being explored to connect these first results to future experiments.

References

[1] Falqué, E., Fernandez, E., & Dubourdieu, D. (2001). Differentiation of white wines by their aromatic index. Talanta, 54, 271–281.
[2] Kustos, M., Gambetta, J., Jeffery, D.W., Heymann, H., Goodman, S., & Bastiana, S.E.P. (2020). A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Research International, 130, 2-11.
[3] Vaudour, E. (2002). The quality of grapes and wine in relation to geography: Notions of terroir at various scales. Journal of Wine Research, 13(2), 117–141.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Argentero Alice1, Caille Soline1, Nolleau Valérie1, Godet Teddy1, Verneuil Catherine2, Mouls Laetitia1 and Rigou Peggy1

1UMR SPO, Univ Montpellier, INRAE, Institut Agro
2Syndicat Général de l’AOC Corbières

List of affiliations ¹ ² ³

Contact the author

Keywords

Terroir, molecular marker, Aroma compounds, HS-SPME-GC-MS, Sensorial analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

For several years, the development of computer resources, and in particular of Geographic Information Systems, have allowed the emergence of a new approach to the analysis and characterization of wine-growing areas (Morlat, 1989; Laville, 1990). These methods, which make it possible to identify homogeneous areas or units of terroir, are based on crossing, statistical analysis (in particular Principal Component Analysis: PCA) and the integration of parameters describing the natural environment in which develop the vine.

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC.

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,