OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Abstract

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir. Several bioclimatic indexes have been proposed that attempt to describe the climatic aptitude for high quality wine production. Based on this, a study was developed to characterize present and future viticultural potential of Chilean zones considering the dynamic of climate change.

 
Maps of central Chile were built based in different climatic parameters and the calculation of bioclimatic indexes like Winkler, Huglin, Mean January Temperature, Cold Nights index and Fregoni. Interactive maps obtained allow determining the aptitude of a locality by introducing the geographic coordinates.

 

In a second step, the future evolution of these climatic parameters was studied considering different models of climatic change (CSIRO-Mk3-6-0; GFDL-CM3 and HadCM3), different scenarios (moderate or severe) and different periods of time. Results obtained are also represented in interactive maps allowing seeing the evolution of a climatic parameter in time depending on the model and severity chosen.

 

Results obtained show a clear evolution of the aptitude of the main viticultural areas with with an increase in aptitude of regions in the south of Chile that presently have limitations for a good maturation, in particular of red varieties. More to the south and closer to the Pacific Ocean areas that are not suitable for wine production now become apt for wine production Northern areas are in general negatively affected by becoming too hot and having increasing problems with water supply.

DOI:

Publication date: June 3, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Edmundo Bordeu, David Mordales and Francisco Meza

Pontificia Universidad Católica de Chile
Vicuña Mackenna 4860 – Comuna de Macul – Santiago – Chile
Postal code: 7820426

Contact the author

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.

Spiders in vineyards show varying effects of inter-row management and the surrounding landscape

In vineyards, management and the surrounding landscape can have different effects on spiders. In temperate regions management (organic vs. conventional) may have less strong effects than for other crops.

Recovery of olfactory capacity following a COVID-19 infection

In this video recording of the IVES science meeting 2021, Sophie Tempère (Institut des Sciences de la Vigne et du Vin – ISVV, Université de Bordeaux) speaks about the recovery of olfactory capacity following a COVID-19 infection. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].