OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Abstract

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir. Several bioclimatic indexes have been proposed that attempt to describe the climatic aptitude for high quality wine production. Based on this, a study was developed to characterize present and future viticultural potential of Chilean zones considering the dynamic of climate change.

 
Maps of central Chile were built based in different climatic parameters and the calculation of bioclimatic indexes like Winkler, Huglin, Mean January Temperature, Cold Nights index and Fregoni. Interactive maps obtained allow determining the aptitude of a locality by introducing the geographic coordinates.

 

In a second step, the future evolution of these climatic parameters was studied considering different models of climatic change (CSIRO-Mk3-6-0; GFDL-CM3 and HadCM3), different scenarios (moderate or severe) and different periods of time. Results obtained are also represented in interactive maps allowing seeing the evolution of a climatic parameter in time depending on the model and severity chosen.

 

Results obtained show a clear evolution of the aptitude of the main viticultural areas with with an increase in aptitude of regions in the south of Chile that presently have limitations for a good maturation, in particular of red varieties. More to the south and closer to the Pacific Ocean areas that are not suitable for wine production now become apt for wine production Northern areas are in general negatively affected by becoming too hot and having increasing problems with water supply.

DOI:

Publication date: June 3, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Edmundo Bordeu, David Mordales and Francisco Meza

Pontificia Universidad Católica de Chile
Vicuña Mackenna 4860 – Comuna de Macul – Santiago – Chile
Postal code: 7820426

Contact the author

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Development of spectral indices to monitoring non-destructive of ripeness for water stressed grapevine (Vitis vinifera L.) using contour map optimization

Accurate and non-destructive monitoring of grape ripening is essential for optimising harvest decisions, particularly under water stress conditions.

Measures to promote biodiversity in viticulture—how do socio-economic factors influence implementation?

Context and purpose. In Germany, vineyards are typically intensively managed monocultural systems shaped by low structural variability.

Chitosan treatment to manage grapevine downy mildew

Downy mildew is one of the most important grapevine diseases, caused by the Oomycete Plasmopara viticola. The management of the disease in organic agriculture can require up to 15 copper applications per year. However, copper accumulates in the soil, is phytotoxic and is toxic for organisms living in the soil, its use has been restricted in European Union to maximum 28 kg in 7 years. Therefore, testing of alternatives with equal effectiveness is desirable. Among those, the natural biopolymer chitosan, obtained from crab shells, proved to be effective toward downy mildew in plot experiments. The aim of our trials was to extend chitosan applications in large scale experiments in different years, cultivars and environmental conditions.