OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Abstract

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir. Several bioclimatic indexes have been proposed that attempt to describe the climatic aptitude for high quality wine production. Based on this, a study was developed to characterize present and future viticultural potential of Chilean zones considering the dynamic of climate change.

 
Maps of central Chile were built based in different climatic parameters and the calculation of bioclimatic indexes like Winkler, Huglin, Mean January Temperature, Cold Nights index and Fregoni. Interactive maps obtained allow determining the aptitude of a locality by introducing the geographic coordinates.

 

In a second step, the future evolution of these climatic parameters was studied considering different models of climatic change (CSIRO-Mk3-6-0; GFDL-CM3 and HadCM3), different scenarios (moderate or severe) and different periods of time. Results obtained are also represented in interactive maps allowing seeing the evolution of a climatic parameter in time depending on the model and severity chosen.

 

Results obtained show a clear evolution of the aptitude of the main viticultural areas with with an increase in aptitude of regions in the south of Chile that presently have limitations for a good maturation, in particular of red varieties. More to the south and closer to the Pacific Ocean areas that are not suitable for wine production now become apt for wine production Northern areas are in general negatively affected by becoming too hot and having increasing problems with water supply.

DOI:

Publication date: June 3, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Edmundo Bordeu, David Mordales and Francisco Meza

Pontificia Universidad Católica de Chile
Vicuña Mackenna 4860 – Comuna de Macul – Santiago – Chile
Postal code: 7820426

Contact the author

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

From local classification to regional zoning. The use of a geographic information system (GIS) in Franconia / Germany. Part 3: classification of soil parameters in vineyards

La conservation de la fertilité du sol est un aspect primordial dans la viticulture durable. Différents paramètres, comme par exemple la topographie, la composition du sol, les conditions climatiques, influencent la fertilité du sol des surfaces viticoes.

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

Toward a model of grape proanthocyanidin extraction during vinification

PAs are compartmentalised within the grape berry, and differ in their composition and degree of extractability. Within each compartment, the CWM limits PA extraction firstly by its degree of permeability and secondly its ability to complex with PA molecules.