GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Abstract

Context and purpose of the study – Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced. The aim of this study was to visually characterise the different types of berry shrivel occurring and the corresponding in two cultivars Vitis vinifera L. Chenin blanc and Shiraz in the Stellenbosch Wine region.

Material and methods – In this study the occurrence of berry shrivel in Chenin blanc and Shiraz grapes were studied in two vineyards in the Stellenbosch Wine of Origin district during the 2017/2018 ripening season. Two distinct microclimates were established by implementing a leaf removal treatment in the bunch zone of the canopies on the morning side of some of the experimental panels around véraison, leading to a more exposed microclimate (leaf removal treatment) versus untreated control panels. To confirm microclimatic impacts, loggers were placed in the vineyards to measure the temperatures in the bunch zone of the control and treatment panels. Additionally, grape composition (berry fresh weight, berry volume, total soluble solids, pH and TA was monitored during the growing season for each of the grape cultivars.

Results – Bunches on vines where leaves were removed were exposed to more direct sunlight and temperature extremes, hence sunburn‐related berry shrivel was induced in these vines, especially in the Chenin blanc cultivar. Other types of berry shrivel were however also identified in both cultivars to various degrees during the ripening season, but late stage dehydration also occurred in both cultivars at the overripe stage. It was possible to visually follow the progress of shrivelling throughout the season and a grading scale was implemented to calculate the affected bunch areas. Slight differences were observed in the grape composition of the control (shaded) and exposed (treatment).

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANCQUAERT1

1Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Keywords

berry shrivel, dehydration, necrosis, sunburn

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Transforming the grapevine world through new breeding techniques

Climate change and environmental degradation are existential threats to europe and the world. One of the most important objectives is to reduce by 2030 the use and the risk of chemical pesticides and fertilisers, reducing nutrient losses and increasing organic farming. Grapevine (vitis spp.) is one of the major and most economically important fruit crops worldwide. It is characterised by high levels of genetic diversity, as result of natural genetic mutations, which are common in grapevines and further assisted by ongoing vegetative propagation.