GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Abstract

Context and purpose of the study – Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced. The aim of this study was to visually characterise the different types of berry shrivel occurring and the corresponding in two cultivars Vitis vinifera L. Chenin blanc and Shiraz in the Stellenbosch Wine region.

Material and methods – In this study the occurrence of berry shrivel in Chenin blanc and Shiraz grapes were studied in two vineyards in the Stellenbosch Wine of Origin district during the 2017/2018 ripening season. Two distinct microclimates were established by implementing a leaf removal treatment in the bunch zone of the canopies on the morning side of some of the experimental panels around véraison, leading to a more exposed microclimate (leaf removal treatment) versus untreated control panels. To confirm microclimatic impacts, loggers were placed in the vineyards to measure the temperatures in the bunch zone of the control and treatment panels. Additionally, grape composition (berry fresh weight, berry volume, total soluble solids, pH and TA was monitored during the growing season for each of the grape cultivars.

Results – Bunches on vines where leaves were removed were exposed to more direct sunlight and temperature extremes, hence sunburn‐related berry shrivel was induced in these vines, especially in the Chenin blanc cultivar. Other types of berry shrivel were however also identified in both cultivars to various degrees during the ripening season, but late stage dehydration also occurred in both cultivars at the overripe stage. It was possible to visually follow the progress of shrivelling throughout the season and a grading scale was implemented to calculate the affected bunch areas. Slight differences were observed in the grape composition of the control (shaded) and exposed (treatment).

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANCQUAERT1

1Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Keywords

berry shrivel, dehydration, necrosis, sunburn

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue

Mining belowground and aboveground microbiome data to identify microbial biomarkers of grapevine health and yield

Vineyards are home to a wide diversity of microorganisms that interact with plants and with each other.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.