Terroir 2012 banner
IVES 9 IVES Conference Series 9 On the meaning of looking for terroir perceptions in blind tastings

On the meaning of looking for terroir perceptions in blind tastings

Abstract

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists, which can be called “metaphysical attributes”, mainly linked to feelings ignited by terroir information. Therefore, wine consumers can be divided in two categories: a) the common consumer, who drinks wine as a hedonistic experience, focusing in the physical attributes (taste, aroma, texture); b) the wine lover, who, besides asking for these basic pleasures, longs for metaphysical or spiritual information, which comes along with data on the production region, its traditions and landscape, the vineyard, winemaking methods and culture, and on the winemaker’s persona. All these metaphysical information are lost in blind tastings, where, primarily, the physical attributes are sensed.

Measurements of chemicals in wines from different terroirs tend to indicate that typicity can be detected; nevertheless, variations in vintage, clones, assemblages, and methods give variability even to terroir wines. In a blind tasting, the eventual identification of terroir characteristics makes a call to the memory, which is not an exact recorder This work reports results from 30 blind tasting sessions, focused on wines from dozens of viticultural regions; it reports also results from seven non-blind tastings of handcrafted wines from the same producer, performed in the winery, as reported in the media. Results show that, even in panels of veteran tasters, terroir attributes are heavily lost in blind tastings; however, reports from non-blind tastings are remarkably focused in a few descriptors. It is concluded that perception of the terroir component, and so, the terroir value, is deeply linked to knowledge of metaphysical attributes, being, nevertheless, consistent from a sensorial perspective.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Jorge DUCATI (1,2), Vilmar BETTÚ (3)

(1) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Brazil
(2) Sociedade Brasileira dos Amigos do Vinho – Regional Sul, Rua Liberdade 120, Porto Alegre, Brazil
(3) Reliquiæ Vini, Estrada do Sabor, Estrada Geral Sao Gabriel, Garibaldi, Brazil

Contact the author

Keywords

wine attributes, sensory perception, taste of place

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effet de l’ombrage respectif des ceps et des grappes de Muscat sur leurs teneurs en composés volatils libres et glycosyles et en précurseurs d’aromes carotenoïdiques

Le Muscat de Frontignan est bien connu pour ses fortes teneurs en composés terpéniques et par l’odeur florale et fruitée que ces composés confèrent aux vins qui en sont issus (1,2).

NMR approach for monitoring the photo-degradation of riboflavin and methionine

The light exposure of white wine is responsible for several reactions leading to changes on colour, flavours and, consequently, affecting the sensory profile.

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

The influence of the soil on the phenolic composition of both grapes and wines : “the Grenache observatory”

La composition fine des raisins de Grenache noir est mal connue. Il est généralement admis une certaine variabilité de comportement de ce cépage qui se manifeste principalement sur la couleur des vins. De nombreux facteurs peuvent être à l’origine de cette variabilité : matériel végétal, pratiques culturales, types de vinification et terroir. Un travail de recherche concernant ce cépage a été engagé dans la Vallée du Rhône.

The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

La composition du raisin de la variété Muscat d’Alexandrie a été étudiée dans trois terroirs différents au Nord-Est de la Tunisie (RafRaf, Baddar et Kelibia).
Des échantillons de raisins ont été récoltés à maturité industrielle durant les saisons 2001 et 2002 dans les trois régions citées. Les paramètres pomologiques (poids moyen de la grappe et de la baie) et physico-chimiques