Terroir 2012 banner
IVES 9 IVES Conference Series 9 On the meaning of looking for terroir perceptions in blind tastings

On the meaning of looking for terroir perceptions in blind tastings

Abstract

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists, which can be called “metaphysical attributes”, mainly linked to feelings ignited by terroir information. Therefore, wine consumers can be divided in two categories: a) the common consumer, who drinks wine as a hedonistic experience, focusing in the physical attributes (taste, aroma, texture); b) the wine lover, who, besides asking for these basic pleasures, longs for metaphysical or spiritual information, which comes along with data on the production region, its traditions and landscape, the vineyard, winemaking methods and culture, and on the winemaker’s persona. All these metaphysical information are lost in blind tastings, where, primarily, the physical attributes are sensed.

Measurements of chemicals in wines from different terroirs tend to indicate that typicity can be detected; nevertheless, variations in vintage, clones, assemblages, and methods give variability even to terroir wines. In a blind tasting, the eventual identification of terroir characteristics makes a call to the memory, which is not an exact recorder This work reports results from 30 blind tasting sessions, focused on wines from dozens of viticultural regions; it reports also results from seven non-blind tastings of handcrafted wines from the same producer, performed in the winery, as reported in the media. Results show that, even in panels of veteran tasters, terroir attributes are heavily lost in blind tastings; however, reports from non-blind tastings are remarkably focused in a few descriptors. It is concluded that perception of the terroir component, and so, the terroir value, is deeply linked to knowledge of metaphysical attributes, being, nevertheless, consistent from a sensorial perspective.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Jorge DUCATI (1,2), Vilmar BETTÚ (3)

(1) Centro Estadual de Pesquisas em Sensoriamento Remoto e Meteorologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Brazil
(2) Sociedade Brasileira dos Amigos do Vinho – Regional Sul, Rua Liberdade 120, Porto Alegre, Brazil
(3) Reliquiæ Vini, Estrada do Sabor, Estrada Geral Sao Gabriel, Garibaldi, Brazil

Contact the author

Keywords

wine attributes, sensory perception, taste of place

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Effect of maceration conditions during the winemaking of withered Corvina grapes on wine polyphenols and anthocyanins

Amarone is an Italian red wine with worldwide recognition and high added value. In Amarone wines, grapes undergo a withering process before vinification; this leads to a modification in the concentrations of sugars, acids, and secondary metabolites.

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.