GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Characterisation of berry shrivel in Vitis vinifera L. Cultivars in the Stellenbosch wine region

Abstract

Context and purpose of the study – Late season dehydration, bunch stem necrosis, sugar accumulation disorder and sunburn are various types of berry shrivel occurring in vineyards. The incidence of these types of shrivel, and the degree to which it occur are influenced by various factors in the vineyard. These factors include the presence of pests and diseases in the vineyard, genetic traits expressed in certain cultivars, as well as climatic and environmental factors. The occurrence of berry shrivel in the vineyard could negatively impact the quality and quantity of the fruit produced. The aim of this study was to visually characterise the different types of berry shrivel occurring and the corresponding in two cultivars Vitis vinifera L. Chenin blanc and Shiraz in the Stellenbosch Wine region.

Material and methods – In this study the occurrence of berry shrivel in Chenin blanc and Shiraz grapes were studied in two vineyards in the Stellenbosch Wine of Origin district during the 2017/2018 ripening season. Two distinct microclimates were established by implementing a leaf removal treatment in the bunch zone of the canopies on the morning side of some of the experimental panels around véraison, leading to a more exposed microclimate (leaf removal treatment) versus untreated control panels. To confirm microclimatic impacts, loggers were placed in the vineyards to measure the temperatures in the bunch zone of the control and treatment panels. Additionally, grape composition (berry fresh weight, berry volume, total soluble solids, pH and TA was monitored during the growing season for each of the grape cultivars.

Results – Bunches on vines where leaves were removed were exposed to more direct sunlight and temperature extremes, hence sunburn‐related berry shrivel was induced in these vines, especially in the Chenin blanc cultivar. Other types of berry shrivel were however also identified in both cultivars to various degrees during the ripening season, but late stage dehydration also occurred in both cultivars at the overripe stage. It was possible to visually follow the progress of shrivelling throughout the season and a grading scale was implemented to calculate the affected bunch areas. Slight differences were observed in the grape composition of the control (shaded) and exposed (treatment).

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Erna BLANCQUAERT1

1Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Contact the author

Keywords

berry shrivel, dehydration, necrosis, sunburn

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

For several years, the development of computer resources, and in particular of Geographic Information Systems, have allowed the emergence of a new approach to the analysis and characterization of wine-growing areas (Morlat, 1989; Laville, 1990). These methods, which make it possible to identify homogeneous areas or units of terroir, are based on crossing, statistical analysis (in particular Principal Component Analysis: PCA) and the integration of parameters describing the natural environment in which develop the vine.

El medio natural de Chile como factor de adaptación de la vid

Chile, junto con Australia, EE.UU., Sudáfrica, Argentina y Nueva Zelanda constituye el grupo de países del nuevo mundo vitivinícola. Todos ellos en conjunto han experimentado en la última década

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Microbiome, disease-resistant varieties, and wine quality

The development of interspecific hybrid varieties (ihvs) resistant to diseases such as powdery mildew and downy mildew allows for a decrease in the use of inputs in vineyards. In this pers-pective, ihvs represent a response to societal demand for reducing environmental impact and are increasingly used in viticulture. At the same time, wines resulting from so-called sponta-neous fermentations, based on indigenous flora, have recently gained popularity.