GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Abstract

Context and purpose of the study – Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology. Leaf/canopy temperature is a biophysical variable with both physiological and agronomic meaning. Improved comprehension of spatial and temporal dynamics of soil and leaf/canopy temperature (thermal microclimate) in irrigated vineyards can support improved crop and soil monitoring and management under more extreme and erratic climate conditions. In this work we propose a conceptual approach to integrate information on major soil-vine-atmosphere interactions under deficit irrigation. Ultimately a conceptual model based on temperature relations is proposed to support assessment of the impact of air and soil temperatures on canopy and berry temperatures, leaf senescence and gas exchange. This model may support Decision Support Systems (DSS) for canopy and soil management and irrigation scheduling in Mediterranean vineyards. In addition a set of temperatures (e.g. canopy, soil) are proposed to feed the conceptual models to support the DSS.

Material and methods – Location & plant material: South Portugal (38º22’ N 7º33’ W); cvs Touriga N. (TOU) & Aragonez (ARA) (syn. Tempranillo), 2,200 pl/ha, 1103-P rootstock, VSP, bilateral Royat Cordon training system, N-S ORIENTATION. Sandy to silty-clay-loam soil, pH=7-7.6, low OM; Irrigation treatments: DI1 -sustained deficit irrigation strategy used by the farm consisting of an equal proportion of crop evapotranspiration (ETc) (0.28 in 2014 and 0.36 in 2015) applied along irrigation period; DI2 – similar to DI1 but with reduced volume applied (0.18 in 2014 and 0.24 in 2015). Measurements: Diurnal courses (8-20h, every 3h) of leaf water potential (ΨPD, Ψleaf), leaf gas exchange (Licor 6400, Licor, USA) and canopy TC (B20, Flir Systems, 7-13 μm, ε=0.96) and Tberry (thermocouples) were determined. Statistics: Randomized complete block design (2 irrigation treat., 4 blocks). Pearson correlations between variables (TC, ψ, gs, An), measured on the west exposed side of the canopy, and between the variables and TS, TC and Tberry were done (Statistix 9.0 software).

Results – The strong correlations between Tleaf and water status in grapevine support the parameter Tc as good predictor of plant water status (Garcia-Tejero et al. 2016; Costa et al. 2019). In parallel, TS was shown to positively influence TC especially at the cluster zone and at the warmest conditions of the day (Costa et al., 2019). Therefore, TS can used as another variable to model and predict thermal stress in vineyards. Better comprehension of thermal and water fluxes in the vineyard mat be predicted on the basis of temperature. Thermal variables such as Tair, TC, Tberry and TS can be used in models and DSS to support water and canopy management.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Joaquim Miguel COSTA1*, Ricardo EGIPTO1,2, Carlos LOPES2, Manuela CHAVES2

LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda Lisboa, Portugal
INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos, Portugal
LEM-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal

Contact the author

Keywords

Mediterranean viticulture, temperature, DSS, water and heat stress, soil and canopy temperature, irrigation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Identification and characterization of polyphenols in fining precipitate

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries.

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitro regeneration protocols, particularly through somatic embryogenesis (SE).

Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

The correlations between vine water deficit cumulated over the ripening period of grapes, assessed by ΔC13 in must sugar, and the main analytic variables of grapes are significant. As a result ΔC13 is a useful tool in zoning homogeneous areas according to their technological qualities when harvesting.

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6.

Cultivation forms and viticulture models adapting to adverse “environmental” conditions

One of the main problems in viticultural production in Istria (Croatia) is a labour shortage in periods of intensive works, mainly during summer, respectively during tourist season.