GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Abstract

Context and purpose of the study – Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology. Leaf/canopy temperature is a biophysical variable with both physiological and agronomic meaning. Improved comprehension of spatial and temporal dynamics of soil and leaf/canopy temperature (thermal microclimate) in irrigated vineyards can support improved crop and soil monitoring and management under more extreme and erratic climate conditions. In this work we propose a conceptual approach to integrate information on major soil-vine-atmosphere interactions under deficit irrigation. Ultimately a conceptual model based on temperature relations is proposed to support assessment of the impact of air and soil temperatures on canopy and berry temperatures, leaf senescence and gas exchange. This model may support Decision Support Systems (DSS) for canopy and soil management and irrigation scheduling in Mediterranean vineyards. In addition a set of temperatures (e.g. canopy, soil) are proposed to feed the conceptual models to support the DSS.

Material and methods – Location & plant material: South Portugal (38º22’ N 7º33’ W); cvs Touriga N. (TOU) & Aragonez (ARA) (syn. Tempranillo), 2,200 pl/ha, 1103-P rootstock, VSP, bilateral Royat Cordon training system, N-S ORIENTATION. Sandy to silty-clay-loam soil, pH=7-7.6, low OM; Irrigation treatments: DI1 -sustained deficit irrigation strategy used by the farm consisting of an equal proportion of crop evapotranspiration (ETc) (0.28 in 2014 and 0.36 in 2015) applied along irrigation period; DI2 – similar to DI1 but with reduced volume applied (0.18 in 2014 and 0.24 in 2015). Measurements: Diurnal courses (8-20h, every 3h) of leaf water potential (ΨPD, Ψleaf), leaf gas exchange (Licor 6400, Licor, USA) and canopy TC (B20, Flir Systems, 7-13 μm, ε=0.96) and Tberry (thermocouples) were determined. Statistics: Randomized complete block design (2 irrigation treat., 4 blocks). Pearson correlations between variables (TC, ψ, gs, An), measured on the west exposed side of the canopy, and between the variables and TS, TC and Tberry were done (Statistix 9.0 software).

Results – The strong correlations between Tleaf and water status in grapevine support the parameter Tc as good predictor of plant water status (Garcia-Tejero et al. 2016; Costa et al. 2019). In parallel, TS was shown to positively influence TC especially at the cluster zone and at the warmest conditions of the day (Costa et al., 2019). Therefore, TS can used as another variable to model and predict thermal stress in vineyards. Better comprehension of thermal and water fluxes in the vineyard mat be predicted on the basis of temperature. Thermal variables such as Tair, TC, Tberry and TS can be used in models and DSS to support water and canopy management.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Joaquim Miguel COSTA1*, Ricardo EGIPTO1,2, Carlos LOPES2, Manuela CHAVES2

LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda Lisboa, Portugal
INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos, Portugal
LEM-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal

Contact the author

Keywords

Mediterranean viticulture, temperature, DSS, water and heat stress, soil and canopy temperature, irrigation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

Modification on grape phenolic and aromatic composition due to different leafroll virus infections

Viral diseases are reported to cause several detrimental effects on grapevine. Among them, leafroll, due to single or mixed infection of GLRaV1 and GLRaV3, and rugose wood, associated to GVA, are considered the most widespread and dangerous.

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

La composition du raisin de la variété Muscat d’Alexandrie a été étudiée dans trois terroirs différents au Nord-Est de la Tunisie (RafRaf, Baddar et Kelibia).
Des échantillons de raisins ont été récoltés à maturité industrielle durant les saisons 2001 et 2002 dans les trois régions citées. Les paramètres pomologiques (poids moyen de la grappe et de la baie) et physico-chimiques