GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Abstract

Context and purpose of the study – Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology. Leaf/canopy temperature is a biophysical variable with both physiological and agronomic meaning. Improved comprehension of spatial and temporal dynamics of soil and leaf/canopy temperature (thermal microclimate) in irrigated vineyards can support improved crop and soil monitoring and management under more extreme and erratic climate conditions. In this work we propose a conceptual approach to integrate information on major soil-vine-atmosphere interactions under deficit irrigation. Ultimately a conceptual model based on temperature relations is proposed to support assessment of the impact of air and soil temperatures on canopy and berry temperatures, leaf senescence and gas exchange. This model may support Decision Support Systems (DSS) for canopy and soil management and irrigation scheduling in Mediterranean vineyards. In addition a set of temperatures (e.g. canopy, soil) are proposed to feed the conceptual models to support the DSS.

Material and methods – Location & plant material: South Portugal (38º22’ N 7º33’ W); cvs Touriga N. (TOU) & Aragonez (ARA) (syn. Tempranillo), 2,200 pl/ha, 1103-P rootstock, VSP, bilateral Royat Cordon training system, N-S ORIENTATION. Sandy to silty-clay-loam soil, pH=7-7.6, low OM; Irrigation treatments: DI1 -sustained deficit irrigation strategy used by the farm consisting of an equal proportion of crop evapotranspiration (ETc) (0.28 in 2014 and 0.36 in 2015) applied along irrigation period; DI2 – similar to DI1 but with reduced volume applied (0.18 in 2014 and 0.24 in 2015). Measurements: Diurnal courses (8-20h, every 3h) of leaf water potential (ΨPD, Ψleaf), leaf gas exchange (Licor 6400, Licor, USA) and canopy TC (B20, Flir Systems, 7-13 μm, ε=0.96) and Tberry (thermocouples) were determined. Statistics: Randomized complete block design (2 irrigation treat., 4 blocks). Pearson correlations between variables (TC, ψ, gs, An), measured on the west exposed side of the canopy, and between the variables and TS, TC and Tberry were done (Statistix 9.0 software).

Results – The strong correlations between Tleaf and water status in grapevine support the parameter Tc as good predictor of plant water status (Garcia-Tejero et al. 2016; Costa et al. 2019). In parallel, TS was shown to positively influence TC especially at the cluster zone and at the warmest conditions of the day (Costa et al., 2019). Therefore, TS can used as another variable to model and predict thermal stress in vineyards. Better comprehension of thermal and water fluxes in the vineyard mat be predicted on the basis of temperature. Thermal variables such as Tair, TC, Tberry and TS can be used in models and DSS to support water and canopy management.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Joaquim Miguel COSTA1*, Ricardo EGIPTO1,2, Carlos LOPES2, Manuela CHAVES2

LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda Lisboa, Portugal
INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos, Portugal
LEM-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal

Contact the author

Keywords

Mediterranean viticulture, temperature, DSS, water and heat stress, soil and canopy temperature, irrigation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Effect of scion-rootstock combinations on the performance of a near-infrared (NIR) spectroscopy method for determining vine water status

In the context of sustainable viticulture, modern and efficient techniques to determine water status are required to optimize irrigation practices. Proximal techniques such as thermography and spectroscopy have shown promising results. When these techniques are incorporated into mobile systems is possible to evaluate the water status on-the-go, offering the possibility to generate variability maps. However, in most cases, complex protocols of data acquisition and analysis are required. Also, the inherent physiological behaviour of the plants under certain water stress conditions needs to be considered. Therefore, the aim of this study was to evaluate the effect of scion-rootstock combinations on the performance of a predefined plant-based method based on proximal near-infrared (NIR) spectroscopy.

Volatile and phenolic profiles of wines closed with different stoppers and stored for 30 months

The aim of this study was to evaluate the volatile and phenolic profiles of three red and one rosé wines stored in bottles for 30 months. Four wines were provided by a winery located in South Tyrol

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

Effects of long-term drought stress on soil microbial communities from a Syrah cultivar vineyard

Changes in the rainfall and temperature patterns affect the increase of drought periods becoming one of the major constraints to assure agricultural and crop resilience in the Mediterranean regions. Beside the adaptation of agricultural practices, also the microbial compartment associated to plants should be considered in the crop management. It is known that the microbial community change according to several factors such as soil composition, agricultural management system, plant variety and rootstock.