GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Abstract

Context and purpose of the study – Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and iii) identifying the impact of temperature on grape berry attributes.

Material and methods – The experiment was carried out on a 0.51 ha Guyot trained Syrah vineyard from the South West of France. Loggers displayed in solar radiation shields were positioned at 19 points in the vineyard to monitor air temperature within the bunch zone every ten minutes between veraison and harvest. At each logger, a sampling area of 21.5 m2 was delimited to collect data on topography, soil stoniness, vine behavior and fruit characteristics at harvest. Rotundone, a sesquiterpene responsible for the black pepper typicality of Syrah wine which is known to be affected by berry temperature, was also determined in wine prepared by microvinification techniques (1-L Erlenmeyer). Data were spatialized using GIS tools and used to calculate several climatic indexes over the measuring period. Dh25, Dh30 and Dh35, the percentage of degree hours above 25°C, 30°C and 35°C respectively were also determined. The whole data set was treated through principal component analysis (PCA).

Results – Average temperature varied across points from 20.93°C to 21.62°C. The amplitude of variation was greater for cool night index and maximum air temperature which fluctuated from 12.49°C to 13.92°C and from 30.36°C to 33.28°C respectively. A relative stability in temperature spatial patterns was observed on the block over the maturation period. Surprisingly, the warmest area in the morning in the center of the block turned out to be the coolest part of the block during the afternoon and the night. Maximal air temperature and cool night index were best explained respectively by stem water potentials and the distance to the southern end of the vineyard which was characterized by a slightly higher elevation and a greater stoniness. Surprisingly rotundone was poorly correlated to Dh25 while Dh25 spatial pattern tends to visually overlay the anthocyanins map. Our results indicate that bunch zone air temperature can differ largely within a single vineyard block and suggest that variations in this environmental factor can affect berry and wine volatile compositions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Olivier GEFFROY1,2*, Fanny PREZMAN2, Thierry DUFOURCQ3, Jean-Philippe DENUX1,4, Harold CLENET1,4

1 Université de Toulouse, INP-École d’Ingénieurs de Purpan, 75 voie du TOEC, 31 076 Toulouse Cedex 3, France
2 IFV Sud-Ouest, V’innopôle, Brames Aigues, 81 310 Lisle Sur Tarn, France
3 IFV Sud-Ouest, Domaine de Mons, 32 100 Caussens, France
4 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex, France

Contact the author

Keywords

temperature, intra-block, spatial pattern, temporal stability, fruit attributes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Bench terraces, agricultural practices and viticultural zoning in Ribeira Sacra (Galicia, Spain).

L’aire d’AOC Ribeira Sacra s’étend sur plus de 200 km au large des versants escarpés du Miño et du Sil, dans la Galice (Espagne).

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.