GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Abstract

Context and purpose of the study – Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and iii) identifying the impact of temperature on grape berry attributes.

Material and methods – The experiment was carried out on a 0.51 ha Guyot trained Syrah vineyard from the South West of France. Loggers displayed in solar radiation shields were positioned at 19 points in the vineyard to monitor air temperature within the bunch zone every ten minutes between veraison and harvest. At each logger, a sampling area of 21.5 m2 was delimited to collect data on topography, soil stoniness, vine behavior and fruit characteristics at harvest. Rotundone, a sesquiterpene responsible for the black pepper typicality of Syrah wine which is known to be affected by berry temperature, was also determined in wine prepared by microvinification techniques (1-L Erlenmeyer). Data were spatialized using GIS tools and used to calculate several climatic indexes over the measuring period. Dh25, Dh30 and Dh35, the percentage of degree hours above 25°C, 30°C and 35°C respectively were also determined. The whole data set was treated through principal component analysis (PCA).

Results – Average temperature varied across points from 20.93°C to 21.62°C. The amplitude of variation was greater for cool night index and maximum air temperature which fluctuated from 12.49°C to 13.92°C and from 30.36°C to 33.28°C respectively. A relative stability in temperature spatial patterns was observed on the block over the maturation period. Surprisingly, the warmest area in the morning in the center of the block turned out to be the coolest part of the block during the afternoon and the night. Maximal air temperature and cool night index were best explained respectively by stem water potentials and the distance to the southern end of the vineyard which was characterized by a slightly higher elevation and a greater stoniness. Surprisingly rotundone was poorly correlated to Dh25 while Dh25 spatial pattern tends to visually overlay the anthocyanins map. Our results indicate that bunch zone air temperature can differ largely within a single vineyard block and suggest that variations in this environmental factor can affect berry and wine volatile compositions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Olivier GEFFROY1,2*, Fanny PREZMAN2, Thierry DUFOURCQ3, Jean-Philippe DENUX1,4, Harold CLENET1,4

1 Université de Toulouse, INP-École d’Ingénieurs de Purpan, 75 voie du TOEC, 31 076 Toulouse Cedex 3, France
2 IFV Sud-Ouest, V’innopôle, Brames Aigues, 81 310 Lisle Sur Tarn, France
3 IFV Sud-Ouest, Domaine de Mons, 32 100 Caussens, France
4 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex, France

Contact the author

Keywords

temperature, intra-block, spatial pattern, temporal stability, fruit attributes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.
This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

Reasoning a Terroir policy on the basis of the prospective study of the French wine sector

The prospective study of the French wine sector (Sebillotte et al., 2004) has identified “groups of micro-scenarios” at the end of the analysis of the characteristics of this wine sector.