GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Abstract

Context and purpose of the study – Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and iii) identifying the impact of temperature on grape berry attributes.

Material and methods – The experiment was carried out on a 0.51 ha Guyot trained Syrah vineyard from the South West of France. Loggers displayed in solar radiation shields were positioned at 19 points in the vineyard to monitor air temperature within the bunch zone every ten minutes between veraison and harvest. At each logger, a sampling area of 21.5 m2 was delimited to collect data on topography, soil stoniness, vine behavior and fruit characteristics at harvest. Rotundone, a sesquiterpene responsible for the black pepper typicality of Syrah wine which is known to be affected by berry temperature, was also determined in wine prepared by microvinification techniques (1-L Erlenmeyer). Data were spatialized using GIS tools and used to calculate several climatic indexes over the measuring period. Dh25, Dh30 and Dh35, the percentage of degree hours above 25°C, 30°C and 35°C respectively were also determined. The whole data set was treated through principal component analysis (PCA).

Results – Average temperature varied across points from 20.93°C to 21.62°C. The amplitude of variation was greater for cool night index and maximum air temperature which fluctuated from 12.49°C to 13.92°C and from 30.36°C to 33.28°C respectively. A relative stability in temperature spatial patterns was observed on the block over the maturation period. Surprisingly, the warmest area in the morning in the center of the block turned out to be the coolest part of the block during the afternoon and the night. Maximal air temperature and cool night index were best explained respectively by stem water potentials and the distance to the southern end of the vineyard which was characterized by a slightly higher elevation and a greater stoniness. Surprisingly rotundone was poorly correlated to Dh25 while Dh25 spatial pattern tends to visually overlay the anthocyanins map. Our results indicate that bunch zone air temperature can differ largely within a single vineyard block and suggest that variations in this environmental factor can affect berry and wine volatile compositions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Olivier GEFFROY1,2*, Fanny PREZMAN2, Thierry DUFOURCQ3, Jean-Philippe DENUX1,4, Harold CLENET1,4

1 Université de Toulouse, INP-École d’Ingénieurs de Purpan, 75 voie du TOEC, 31 076 Toulouse Cedex 3, France
2 IFV Sud-Ouest, V’innopôle, Brames Aigues, 81 310 Lisle Sur Tarn, France
3 IFV Sud-Ouest, Domaine de Mons, 32 100 Caussens, France
4 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex, France

Contact the author

Keywords

temperature, intra-block, spatial pattern, temporal stability, fruit attributes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Understanding the expression of gene families involved in anthocyanin biosynthesis during berry ripening: Tannat as a case study

The quality of wine is assessed, among other things, by its color, which is mainly due to its anthocyanin content. These pigments are polyphenols that give red, purple and blue hues depending on the relative proportion of anthocyanins produced by the action of flavonoid 3’5′ hydroxylase (delphinidin-3-glucoside, petunidin-3-glucoside, malvidin-3-glucoside) or flavonoid 3′ hydroxylase (cyanidin-3-glucoside, peonidin-3-glucoside). To study the genes involved in this biosynthetic pathway, we focused on Vitis vinifera cv. Tannat, known for producing wines with higher anthocyanin content and darker purple color compared to most red grape varieties. In this work, we have performed RNA-Seq analysis of skins during berry development, taking green and red berries at 50% veraison as separate samples, as an experimental strategy to focus on the differential expression of genes of interest.

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.

Identification of riboflavin low producer yeasts to prevent the light-struck taste in white wines

Wine quality maintenance during the storage is a fundamental aspect for both wine producers and consumers. Nowadays, great attention has been given to the light effect

Climate effect on ripening process in Vitis vinifera, L. cv. Cencibel

A seven years survey (2003 to 2009) has been carried out over old traditional vineyards cv. Cencibel in La Mancha region (Spain). Seven plots with more than 35 years old were sampled from veraison to harvest, measuring soluble solids (ºBaumé) and acid concentration (g/l in tartaric acid).