GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Abstract

Context and purpose of the study – Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and iii) identifying the impact of temperature on grape berry attributes.

Material and methods – The experiment was carried out on a 0.51 ha Guyot trained Syrah vineyard from the South West of France. Loggers displayed in solar radiation shields were positioned at 19 points in the vineyard to monitor air temperature within the bunch zone every ten minutes between veraison and harvest. At each logger, a sampling area of 21.5 m2 was delimited to collect data on topography, soil stoniness, vine behavior and fruit characteristics at harvest. Rotundone, a sesquiterpene responsible for the black pepper typicality of Syrah wine which is known to be affected by berry temperature, was also determined in wine prepared by microvinification techniques (1-L Erlenmeyer). Data were spatialized using GIS tools and used to calculate several climatic indexes over the measuring period. Dh25, Dh30 and Dh35, the percentage of degree hours above 25°C, 30°C and 35°C respectively were also determined. The whole data set was treated through principal component analysis (PCA).

Results – Average temperature varied across points from 20.93°C to 21.62°C. The amplitude of variation was greater for cool night index and maximum air temperature which fluctuated from 12.49°C to 13.92°C and from 30.36°C to 33.28°C respectively. A relative stability in temperature spatial patterns was observed on the block over the maturation period. Surprisingly, the warmest area in the morning in the center of the block turned out to be the coolest part of the block during the afternoon and the night. Maximal air temperature and cool night index were best explained respectively by stem water potentials and the distance to the southern end of the vineyard which was characterized by a slightly higher elevation and a greater stoniness. Surprisingly rotundone was poorly correlated to Dh25 while Dh25 spatial pattern tends to visually overlay the anthocyanins map. Our results indicate that bunch zone air temperature can differ largely within a single vineyard block and suggest that variations in this environmental factor can affect berry and wine volatile compositions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Olivier GEFFROY1,2*, Fanny PREZMAN2, Thierry DUFOURCQ3, Jean-Philippe DENUX1,4, Harold CLENET1,4

1 Université de Toulouse, INP-École d’Ingénieurs de Purpan, 75 voie du TOEC, 31 076 Toulouse Cedex 3, France
2 IFV Sud-Ouest, V’innopôle, Brames Aigues, 81 310 Lisle Sur Tarn, France
3 IFV Sud-Ouest, Domaine de Mons, 32 100 Caussens, France
4 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex, France

Contact the author

Keywords

temperature, intra-block, spatial pattern, temporal stability, fruit attributes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Spatial Analysis of Climate in Winegrape Growing Regions in Portugal

Spatial climate data at a 1 km resolution has allowed for a comprehensive mapping and assessment of viticulture DOs regions in Portugal. Overall the 50 regions and sub-regions in Portugal range

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Unleashing the power of artificial intelligence for viticulture and oenology on earth and space

Implementing artificial intelligence (AI) in viticulture and enology is a rapidly growing field of research with an essential number of potential practical applications.

Colour, phenolic, and sensory characteristics of commercial monovarietal white wines produced with maceration

White wines produced with skin and seed contact are of great interest in the wine sector. Maceration, whether performed prior to or concurrently with alcoholic fermentation, or even extended beyond its completion, significantly impacts the chromatic, mouthfeel, and aroma characteristics of these wines.