GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

An intra-block study of bunch zone air temperature and its impact on berry and wine attributes

Abstract

Context and purpose of the study – Temperature is a key environmental factor affecting grape primary and secondary metabolites. Even if several mesoscale studies have already been conducted on temperature especially within a Protected Designation of Origin area, few data are available at an intra-block scale. The present study aimed at i) assessing the variability in bunch zone air temperature within a single vineyard block and the temporal stability of temperature spatial patterns, ii) understanding temperature drivers and iii) identifying the impact of temperature on grape berry attributes.

Material and methods – The experiment was carried out on a 0.51 ha Guyot trained Syrah vineyard from the South West of France. Loggers displayed in solar radiation shields were positioned at 19 points in the vineyard to monitor air temperature within the bunch zone every ten minutes between veraison and harvest. At each logger, a sampling area of 21.5 m2 was delimited to collect data on topography, soil stoniness, vine behavior and fruit characteristics at harvest. Rotundone, a sesquiterpene responsible for the black pepper typicality of Syrah wine which is known to be affected by berry temperature, was also determined in wine prepared by microvinification techniques (1-L Erlenmeyer). Data were spatialized using GIS tools and used to calculate several climatic indexes over the measuring period. Dh25, Dh30 and Dh35, the percentage of degree hours above 25°C, 30°C and 35°C respectively were also determined. The whole data set was treated through principal component analysis (PCA).

Results – Average temperature varied across points from 20.93°C to 21.62°C. The amplitude of variation was greater for cool night index and maximum air temperature which fluctuated from 12.49°C to 13.92°C and from 30.36°C to 33.28°C respectively. A relative stability in temperature spatial patterns was observed on the block over the maturation period. Surprisingly, the warmest area in the morning in the center of the block turned out to be the coolest part of the block during the afternoon and the night. Maximal air temperature and cool night index were best explained respectively by stem water potentials and the distance to the southern end of the vineyard which was characterized by a slightly higher elevation and a greater stoniness. Surprisingly rotundone was poorly correlated to Dh25 while Dh25 spatial pattern tends to visually overlay the anthocyanins map. Our results indicate that bunch zone air temperature can differ largely within a single vineyard block and suggest that variations in this environmental factor can affect berry and wine volatile compositions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Olivier GEFFROY1,2*, Fanny PREZMAN2, Thierry DUFOURCQ3, Jean-Philippe DENUX1,4, Harold CLENET1,4

1 Université de Toulouse, INP-École d’Ingénieurs de Purpan, 75 voie du TOEC, 31 076 Toulouse Cedex 3, France
2 IFV Sud-Ouest, V’innopôle, Brames Aigues, 81 310 Lisle Sur Tarn, France
3 IFV Sud-Ouest, Domaine de Mons, 32 100 Caussens, France
4 UMR 1201 DYNAFOR, INRA / Toulouse INP, 24 chemin de Borderouge 31326 Castanet Tolosan Cedex, France

Contact the author

Keywords

temperature, intra-block, spatial pattern, temporal stability, fruit attributes

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

Assessment of antimicrobial effect of chitosan extracted from different sources against unwanted wine microorganisms

During wine production process high attention to the microbiological control from fermentation of the grape must to bottling is necessary. In fact, control of the indigenous microflora of the grape ensures correct fermentation activity of the inoculated starter, while control of the microorganisms in the finished wine is essential to prevent wine spoilage and to ensure the dominance of the desired bacteria when malolactic fermentation is required (Mas and Portillo, 2022).