GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

Influence of trellis system and shoot density in yield and grape composition of a vineyard of Cabernet Sauvignon, in warm climate

Abstract

Context and purpose of the study – In vineyards grown in warm areas, it is usual that the stage of maturity of the grapes is fast and easily reach a high concentration of sugar and low acidity, but not a adequate phenolic maturation. The geometry of the trellis system and the shoot density can modify the microclimate of the cluster and, therefore, the maturation process.

Material and methods – In order to know whether, in warm areas, free or semi-free foliage systems are most appropriate to achieve a maturity more balanced than systems with guided foliage, such as the vertical shoot positioned, during 2013 and 2014 developed a test in a vineyard of Cabernet Sauvignon in Albacete (Spain). Comparing two trellis systems – vertical shoot positioned and sprawl -, each of them with three shoot densities – 35000, 55000 and 70000 shoots per hectare-. During maturation were determined the weight of the grape and the basic composition of the must (° Brix, pH and total acidity). Yield components and the grape phenolic components were determined at harvest.

Results – In both trellis systems the increased of crop load generated a proporcional increase in yield respect number of shoot, in addition to a delay in maturation, with lower concentrations of sugar and total phenols, and higher acidity. The vineyard in sprawl reached, usually, higher concentrations of sugar, but with equal or lower levels of acidity on vertical shoot positioned, which means a better sugar/acidity balance. The effect of the trellis system on the grape phenolic components was not consistent for the two years of study.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Emilio PEIRO1,2*, Pedro JUNQUERA1,2, José Ramón LISSARRAGUE1,2

1 Grupo de Investigación en Viticultura. E.T.S.I.A.A.B. Universidad Politécnica de Madrid. C/ Senda del Rey s/n, 28040. Madrid, Spain
2 Gestión Integral de Viticultura (GIVITI), C/ Alcántara nº 46, bajo drcha, 28006, Madrid, Spain

Contact the author

Keywords

trellis systems, shoot density, yield, berry composition

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Soil fertility and confered vigour by rootstocks

The adaptation of rootstock to scion variety and soil determines largely the control of the vegetative growth for grapevine. Many experiments were performed in the vineyard to classify the rootstocks according to their soil adaptation and to their effect on vine vigour. So far there are no data describing the course of appearance of rootstock effects after plantation. Moreover the underlying mechanisms of conferred vigour remain largely unknown.

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality