GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impact of decadal cold waves over Europe on future viticultural practices

The impact of decadal cold waves over Europe on future viticultural practices

Abstract

Context and purpose of the study – A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas. However, model uncertainty is very large over Europe, as it is associated with the fate of the of the North Atlantic subpolar gyre (SPG) oceanic convection, which is simulated to collapse in a few climate models, producing single or multiple abrupt temperature drop over the North Atlantic. These “cold waves” strongly influence the temperature evolution over Europe, yet are ruled out in a multi-model ensemble analysis, since hidden by the procedure of averaging. Here, we isolate and investigate the implications that such large decadal-scale temperature variations potentially have for viticulture over Europe.

Material and methods – Our methodology consists in coupling dynamical downscaled EUR-44 CORDEX temperature projections with a hierarchy of phenological models simulating the main developmental stages of the grapevine. In particular, we use a set of 7 different climate models – one of which, the CSIRO-Mk3-6-0 model, exhibits a SPG convection collapse – and 3 different phenological models, namely (i) a linear non-sequential, (ii) a linear sequential and (iii) a non-linear sequential model.

Results – The general increase of temperature over Europe projected by all the climate models over the 21st century leads to an anticipation of all the developmental stages of the grapevine. This warming trend makes climate conditions adequate for high-quality wine production in some regions that are currently not. However, projections from CSIRO-Mk3-6-0 show that this long-term warming trend is suddenly interrupted by cold waves lasting several years over most of Europe, abruptly pushing the climate back to conditions that are very similar to the present. By defining the climatic suitability for premium wine production as those conditions satisfying the temperature requirements for the grapevine ripening to fall within a specific period of the year, we report a loss of suitability during the cold wave events in most of those regions that became favourable due to the 21st century gradual warming. Abrupt cooling in the North Atlantic, although simulated by only a few climate models, has been shown to be physically plausible in the context of climate change. Our findings therefore disclose that varietal northward shift may be not the most appropriate strategy if applied over those regions strongly hit by the cold waves, and so provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni SGUBIN1, Didier SWINGEDOUW1, Iñaki García de CORTÁZAR-ATAURI2, Nathalie OLLAT3, Cornelis van LEEUWEN3

1 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC) -Universitè de Bordeaux, Pessac, France
2 AGROCLIM – Institut National de la Recherche Agronomique (INRA), Avignon, France
EGFV, Bordeaux Sciences Agro, Univ. Bordeaux, 33883 Villenave d’Ornon, France

Contact the author

Keywords

Climate Change, Grapevine Phenology, Climatic suitability, Decadal-scale Cold Waves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.

Vineyard innovative tools based on the integration of earth observation services and in-field sensors (VitiGEOSS project)

Climate change is having an unprecedented impact on the wine industry, which is one of the major agricultural sectors around the world. Global warming, combined with the variation in rainfall patterns and the increase in frequency of extreme weather events, is significantly influencing vine physiology and exposing, more frequently, plants to severe biotic and abiotic stresses. This represents a challenge for viticulturists who need to take complex decisions to adjust vineyard management and achieve oenological goals.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

Vitamins in grape must: let’s lift a corner of the veil

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades.