GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impact of decadal cold waves over Europe on future viticultural practices

The impact of decadal cold waves over Europe on future viticultural practices

Abstract

Context and purpose of the study – A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas. However, model uncertainty is very large over Europe, as it is associated with the fate of the of the North Atlantic subpolar gyre (SPG) oceanic convection, which is simulated to collapse in a few climate models, producing single or multiple abrupt temperature drop over the North Atlantic. These “cold waves” strongly influence the temperature evolution over Europe, yet are ruled out in a multi-model ensemble analysis, since hidden by the procedure of averaging. Here, we isolate and investigate the implications that such large decadal-scale temperature variations potentially have for viticulture over Europe.

Material and methods – Our methodology consists in coupling dynamical downscaled EUR-44 CORDEX temperature projections with a hierarchy of phenological models simulating the main developmental stages of the grapevine. In particular, we use a set of 7 different climate models – one of which, the CSIRO-Mk3-6-0 model, exhibits a SPG convection collapse – and 3 different phenological models, namely (i) a linear non-sequential, (ii) a linear sequential and (iii) a non-linear sequential model.

Results – The general increase of temperature over Europe projected by all the climate models over the 21st century leads to an anticipation of all the developmental stages of the grapevine. This warming trend makes climate conditions adequate for high-quality wine production in some regions that are currently not. However, projections from CSIRO-Mk3-6-0 show that this long-term warming trend is suddenly interrupted by cold waves lasting several years over most of Europe, abruptly pushing the climate back to conditions that are very similar to the present. By defining the climatic suitability for premium wine production as those conditions satisfying the temperature requirements for the grapevine ripening to fall within a specific period of the year, we report a loss of suitability during the cold wave events in most of those regions that became favourable due to the 21st century gradual warming. Abrupt cooling in the North Atlantic, although simulated by only a few climate models, has been shown to be physically plausible in the context of climate change. Our findings therefore disclose that varietal northward shift may be not the most appropriate strategy if applied over those regions strongly hit by the cold waves, and so provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni SGUBIN1, Didier SWINGEDOUW1, Iñaki García de CORTÁZAR-ATAURI2, Nathalie OLLAT3, Cornelis van LEEUWEN3

1 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC) -Universitè de Bordeaux, Pessac, France
2 AGROCLIM – Institut National de la Recherche Agronomique (INRA), Avignon, France
EGFV, Bordeaux Sciences Agro, Univ. Bordeaux, 33883 Villenave d’Ornon, France

Contact the author

Keywords

Climate Change, Grapevine Phenology, Climatic suitability, Decadal-scale Cold Waves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.