GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impact of decadal cold waves over Europe on future viticultural practices

The impact of decadal cold waves over Europe on future viticultural practices

Abstract

Context and purpose of the study – A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas. However, model uncertainty is very large over Europe, as it is associated with the fate of the of the North Atlantic subpolar gyre (SPG) oceanic convection, which is simulated to collapse in a few climate models, producing single or multiple abrupt temperature drop over the North Atlantic. These “cold waves” strongly influence the temperature evolution over Europe, yet are ruled out in a multi-model ensemble analysis, since hidden by the procedure of averaging. Here, we isolate and investigate the implications that such large decadal-scale temperature variations potentially have for viticulture over Europe.

Material and methods – Our methodology consists in coupling dynamical downscaled EUR-44 CORDEX temperature projections with a hierarchy of phenological models simulating the main developmental stages of the grapevine. In particular, we use a set of 7 different climate models – one of which, the CSIRO-Mk3-6-0 model, exhibits a SPG convection collapse – and 3 different phenological models, namely (i) a linear non-sequential, (ii) a linear sequential and (iii) a non-linear sequential model.

Results – The general increase of temperature over Europe projected by all the climate models over the 21st century leads to an anticipation of all the developmental stages of the grapevine. This warming trend makes climate conditions adequate for high-quality wine production in some regions that are currently not. However, projections from CSIRO-Mk3-6-0 show that this long-term warming trend is suddenly interrupted by cold waves lasting several years over most of Europe, abruptly pushing the climate back to conditions that are very similar to the present. By defining the climatic suitability for premium wine production as those conditions satisfying the temperature requirements for the grapevine ripening to fall within a specific period of the year, we report a loss of suitability during the cold wave events in most of those regions that became favourable due to the 21st century gradual warming. Abrupt cooling in the North Atlantic, although simulated by only a few climate models, has been shown to be physically plausible in the context of climate change. Our findings therefore disclose that varietal northward shift may be not the most appropriate strategy if applied over those regions strongly hit by the cold waves, and so provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni SGUBIN1, Didier SWINGEDOUW1, Iñaki García de CORTÁZAR-ATAURI2, Nathalie OLLAT3, Cornelis van LEEUWEN3

1 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC) -Universitè de Bordeaux, Pessac, France
2 AGROCLIM – Institut National de la Recherche Agronomique (INRA), Avignon, France
EGFV, Bordeaux Sciences Agro, Univ. Bordeaux, 33883 Villenave d’Ornon, France

Contact the author

Keywords

Climate Change, Grapevine Phenology, Climatic suitability, Decadal-scale Cold Waves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.

Shoot heterogeneity effects in a Shiraz/R99 vineyard

Nous avons fait des recherches sur l’effet de l’hétérogénéité des bourgeons sur les paramètres de la croissance végétative et reproductive, la physiologie de la vigne et la composition du raisin dans une parcelle de Shiraz/Richter 99. Des bourgeons sous-développés (typiquement plus courts et moins mûrs à la véraison) ont été comparés avec

Thinner topsoil improves vine growth and fruit composition in Mid-Atlantic United States vineyards

Aim: The aim of this study was to investigate the impact of topsoil thickness on dormant pruning weights, cluster compactness, and fruit composition (°Brix, titratable acidity, pH) in the Mid-Atlantic of the United States. 

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

Viticultural characterisation of soils from triassic period at Beaumes-de-Venise (Côtes du Rhône, France)

Wineries of Beaumes-de-Venise area make their best red wines with grapes from the “Triassic terroir”. This « terroir » is characterized by soils from the Triassic period. These specific soils are complex and quite heterogeneous. They originate from an eventful geological history to keep in mind to understand soils geographical distribution.