Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Abstract

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality, tipicity and adaptation to different climate conditions. Non-volatile phenolic compounds are intrinsic components of grape fruits and derived products, particularly wine. They constitute a heterogeneous family of compounds and play an important role on the sensorial attributes of wine because they are responsible for some of important organoleptic properties as colour, flavour, bitterness and astringency. In the present study, we used a targeted metabolomics approach based on ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-QqQ-MS/MS) to study the anthocyanin and non-coloured phenol profiles of a singular Tempranillo clone (Tempranillo negro or VN21), characterized by a dark-blue color in grape berry skin, as compared to RJ43, one of the most cultivated clones in D.O.Ca. Rioja (Spain). In addition, we investigated differences between VN21 and RJ43 clones, in the phenolic transference from grape to wine at different phases of the winemaking process. The results showed that anthocyanin and non-colored phenol content was higher in VN21 grape skin and seeds than in RJ43. With respect to anthocyanins, the singular color of grape skin in VN21 could be explained by higher concentrations of peonidin and cyanidin derivatives. Regarding non-colored phenols, the main differences were observed for proanthocyanidins and stilbenes concentration in grape skin and more importantly in seeds. Those content differences observed in berries were enhanced in the VN21 wines, displaying significantly higher concentrations of anthocyanins, as well as significantly increased contents of mainly proanthocyanidins and stilbenes. The results manifest the importance of intra-cultivar genetic diversity to obtain red wines with a high phenolic content, responsible of key quality aspects of the wine such as organoleptic properties, stability, complexity and health benefits. Moreover, this study exemplifies how spontaneous somatic variation can be used through grapevine clonal selection combining metabolomic analyses.

FUNDING SOURCES

This work was partially supported by project BIO2017-86375-R from the Spanish Ministry of Economy and Competitiveness (co-funded by the European Social Fund, European Union); YF was supported by a grant from Government of La Rioja; M.J. Motilva thanks to CSIC for partial funding through the “Ayudas incorporación a escalas científicas CSIC, 2018” (Reference 201870I129).

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Yolanda Ferradás 

Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain,Carolina ROYO, José Miguel MARTÍNEZ-ZAPATER and María José MOTILVA  Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6 (LO-20 – salida 13). 26007 Logroño (La Rioja), Spain

Contact the author

Keywords

anthocyanins, berry phenolic composition, wine phenolic composition, somatic variation, grapevine, phenolic compounds, stilbenes, tempranillo

Citation

Related articles…

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.

Aromatic profile of six different clones of Chardonnay grape berries in Minas Gerais (Brazil)

Aromas are one of the key points in food analysis since they are related to character, quality and consequently consumer acceptance. It is not different in the winery industry, where the aromatic profile is a combination of viticultural and oenological practices. Based on the development of more aromatic clones and on the potential to produce sparkling wines at Caldas, in the southern region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1,100m), the aim of this work was the determination of volatile compounds in six different clones of Chardonnay grape berries to better understand which compounds add bouquet to the wine, and additionally comprehend the impacts of the edaphoclimatic and annual conditions on the improvement of grape-growing and winemaking practices.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.