GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Geospatial technologies in spatially defined viticulture: case study of a vineyard with Agiorgitiko variety in Koutsi, Nemea, Greece

Abstract

Context and purpose of the study – Geospatial technologies have significant contribution to viticulture, especially in small-scale vineyards, which require precise management. Geospatial data collected by modern technologies, such as Unmanned Aerial Vehicle (UAV) and satellite imagery, can be processed by modern software and easily be stored and transferred to GIS environments, highlighting important information about the health of vine plants, the yield of grapes and the wine, especially in wine-making varieties. The identification of field variability is very important, particularly for the production of high quality wine. Modern geospatial data management technologies are used to achieve an easy and effortless localization of the fields’ variability. The aim of this study is to record and investigate the variability of all factors (soil, relief, etc.) that affect the qualitative and quantitative yield of the vineyard and their correlation to the characteristics of yield.

Material and methods – The study area is located in Koutsi, a region of the Municipality of Nemea, which is a famous area for its early ripening vineyards. The 1.3 ha vineyard was planted in 1980 with the Black Nemea (Agiorgitiko) variety on 41B rootstock, with planting distances of 2.30 x 1.20 m and planting density of 362 stumps per 0.1 ha. The orientation of the planting lines is North to South. The vineyard was divided into 13 blocks of about 0.1 ha each, after its study by orthomosaic, collected from UAV, and taking into account the planting lines and its shape. From each block, soil samples were collected in areas with different color (macroscopic observation using UAV data), at 13 points, in two depths of 0-30 cm and 30-60 cm. Soil analysis showed that the soil is characterized as normal, heavy clayey, moderately alkaline, moderate in organic matter, adequately supplied with phosphorus (P), poor in potassium (K), slightly low in boron (B), and low to moderate levels of trace elements. Total calcium carbonate (CaCO3) ranges from 56 to 74%, except for one sampling site which is approximately 30%. Harvesting conducted in early September when Baume degrees were greater than 13o. UAV flights were conducted using the DJI Matrice 100, DJI Phantom 3 and Sensefly Ebee platforms. The sensors used for this study were Parrot Sequoia (bands: G (550nm), R (660nm), Red-Edge (735nm) and Near-Infrared (790nm), RGB) and a modified Go-Pro camera.

Results – The obtained UAV images were used to extract Digital Terrain Model (DTM) and orthomosaic. Altitude and slope were calculated in the vineyard using the DTM. The orthomosaic was used to observe the phenotypic characteristics of the vineyard, such as soil variation (e.g. soil color) and cultivation characteristics. Thus, it was possible to monitor the condition of the vineyard in order to schedule and apply the required cultivation techniques and procedures. Important observations have been also made through vegetation indices. Exporting indices, such as Normalized Difference Vegetation Index (NDVI) supplied valuable information on the vigor and plant health of the vineyard. Thematic maps related to fertilization, irrigation and plant protection were also created. Using this information, cultivation techniques were more efficient, because farmers could focus on plants which were less productive and in need of more nutrients. Finally, thematic maps were useful in delineating management zones, which is extremely beneficial to viticulture.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Nikolaos AGGELOPOULOS1, Dimitrios STATERAS1, Antonios PAPADOPOULOS2, Anastasia PRIOVOLOU1, Dionissios KALIVAS1*

1 Laboratory of Soil Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
2 Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, 14561 Athens, Greece

Contact the author

Keywords

Geographical Information Systems, Unmanned Aerial Systems, spatial analysis, viticulture, grapevine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Genomic comparison on O. oeni: can l. hilgardii be a novel starter culture in malolactic fermentation?

Malolactic fermentation (MLF) the microbial bioconversion of L-malic acid into L-lactic acid, is a pivotal metabolic process that holds fundamental significance for the quality and organoleptic characteristics of some wines. Oenococcus oeni is considered to be the main player in this conversion, and it is globally used as a starter culture for mlf thanks to his capacity to tolerate the harsh wine environment.

Electrochemical approaches in wine analysis 

There is a high demand in the wine industry for analytical methods able to provide useful information to support the decision-making process in the vineyard and in the winery. Ideally these methods should be rapid (e.g.

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.

Physical-mechanical berry skin traits as additional indicators of resistance to botrytis bunch rot and grape sunburn

Climate change increasingly leads to altered growing conditions in viticulture, such as heat stress, drought or high infection pressure favoring pathogen infection.

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.