GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Analysis of primary, secondary and tertiary aromas in Vitis vinifera L. Syrah wines with an extemporaneous production cycle in two regions of São Paulo – Brazil, using GC-MS

Analysis of primary, secondary and tertiary aromas in Vitis vinifera L. Syrah wines with an extemporaneous production cycle in two regions of São Paulo – Brazil, using GC-MS

Abstract

Context and purpose of the study – The aromatic perception is one of the main factors that influence the consumer when determining the wine’s quality and acceptance. Numerous factors (soil, climate, winemaking style, cultivar) can influence the volatile compounds. Some of these compounds are released directly from the grape berries while others are formed during the fermentation and aging processes. However, little is known about the quality and aromatic formation of Syrah variety in the winter cycle cultivated in São Paulo. This study aimed to characterize the primary (originated from the grape), secondary (fermentation) and tertiary aromas (evolution) of these wines, showing the wine potential from new producing regions in São Paulo state.

Material and methods – The microvinifications were made using the traditional method. The Syrah variety (clone 174 ENTAV – INRA ® on rootstock 1103P – clone 768 ENTAV – INRA ®) was conducted in double cordon VSP system, with winter harvest in Indaiatuba (low altitude and hot climate) and São Bento do Sapucaí (high altitude and cold) – Brazil. The analyses of volatile compounds were carried out in the main stages of the vinification process (must extraction, after alcoholic fermentation, after malolatic fermentation, before packaging and after 6 months in bottle). The samples were collected and frozen at -80 ° C until analysis. An Agilent 7890 GC system coupled to 5977 MS detector equipped with a Supelcowax column (30m x 0.25mm x 0.25μm film thickness) was used.

Results – Vines from the Indaiatuba region presented an average production of 7 bunches per plant. The bunches showed average weight of 76.5 g and size of 10.9 cm. Berries had 11 mm diameter and weighed 1.5 g. Must presented total soluble solids of 20ºBrix, total acidity of 105 meq.L-1, pH 3 and 1084 density. 24 primary aromas were found, such as lavender and apricot, 42 secondary aromas such as cooked apple and roses, and 17 tertiary aromas such as butter and honey. The vines of São Bento do Sapucaí presented an average of 9 bunches per plant. Bunches with an average weight of 101.8 g and length of 13 cm. Berries had a diameter of 12.5 mm and a weight of 1.5 g. Must presented total soluble solids of 21.5ºBrix, total acidity of 100 meq.L-1, pH 3 and 1090 density. The must had 29 primary aromas, such as mint and pear, 36 secondary aromas, such as honey and rose-orange, and 20 tertiary aromas such as wintergreen and mint.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Lucas AMARAL1,2*, Luísa TANNURE3, Marite DAL’OSTO3, Florença BORGES1,2 and Eduardo PURGATTO1,2

1 Dept. of Food Science and Exp. Nutrition, School of Pharmaceutical Sciences USP– 05508-000 São Paulo –Brazil
2 Food Research Center (FoRC), CEPID-FAPESP – USP– 05508-000 São Paulo – Brazil
3 Instituto Federal de São Paulo- IFSP – 18145-090, São Paulo – Brazil

Contact the author

Keywords

grapevine, Syrah, grapevine cycle modification, aroma, cromatography, Brazil

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

Research summary on the use of Terroir as a wine purchasing cue

Due to the current challenging nature of the global wine market, and recent growth in number and strength of competitors from non-traditional wine producing countries, European wine producers are focussing on the potential to develop a competitive advantage through the concept of terroir.

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.