GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Abstract

Context and purpose of the study – Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

Material and methods – The experiment has been established in Borota (Hajós-Baja wine region, Hungary) in 3 repetitions with ‘Cserszegi fűszeres’ (Vitis vinifera L.) cultivar and with two row orientations (NE-SW and NW-SE) in 2016. Two canopy managements were applied: Sylvoz cordon (S; VSP) and Modified Sylvoz cordon (MS; shoots not positioned into the wires). The presented data have been collectedon 16 August 2017. Vegetative performance of the canopies has been investigated with remote sensing technique (UAV), mounted with a Parrot Sequoia multispectral (through 4 color channels: Green, Red, Red edge and NIR) and Sony RGB camera. The drone was flying at the altitude of 120 m, NDVI index map was created with the help of Pix4D, and the 3D NDVI figure was generated with MATLAB software. Canopy size and structure were evaluated by using a Smart phone application, i.e. VitiCanopy software (De Bei et al., 2016) and the Point Quadrat (PQ,) method (Smart and Robinson, 1991). PQ data were recorded as leaf layer number, percentage of interior leaves, average canopy thickness.

Results – The photosynthetically active canopy surface proved to be larger for Modified Sylvoz cordon, which was well reflected inUAV NDVI and 3D NDVI data. Field measurements also support this observation. VitiCanopy LAI values clearlypresented this difference as well. Point Quadrat assessment drew attention to wider canopy and slightly higher interior leaves of MS cordon. Differences between row orientations need further refined studies. The MS system results in higher yield and needs less labour (only 2 mechanical trimming in the growing season) and in addition, seems to be more suitable for the desired wine style (fully aromatic fresh white wine) in the given terroir.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

B. Bálo1, N. Szobonya1, B. Vanek2, Gy. Váradi 1, P. Bodor1, F. Firtha3, Cs. Koch4

1 Department of Viticulture, Faculty of Horticultural Sciences, Szent István University, Budapest, Hungary
2 Ventus-Tech Ltd., Budapest, Hungary
3 Department of Physics-Automation, Szent István University, Budapest, Hungary
4 KOCH Winery, Borota, Hungary

Contact the author

Keywords

Canopy structure, UAV, 3D NDVI, Smart phone application, Point Quadrat

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

INCREASING PINOT NOIR COLOUR DENSITY THROUGH SEQUENTIAL INOCULATION OF FLOCCULENT COMMERCIAL WINE YEAST SPECIES

Vitis vinifera L. cv. Pinot noir can be challenging to manage in the winery as its thin skins require careful handling to ensure sufficient extraction of wine colour to promote colour stability during ageing.1 Literature has shown that fermentation with flocculent yeasts can increase red wine colour density.2 As consumers prefer greater colour density in red wines,3 the development of tools to increase colour density would be useful for the wine industry. This research explored the impact of interspecies sequential inoculation and co-flocculation of commercial yeast on Pinot noir wine colour.

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Exploring the plasticity of the grapevine drought physiology

Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought

Sustainablity of vineyards in the Priorat region (NE Spain)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019).