GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Abstract

Context and purpose of the study – Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

Material and methods – The experiment has been established in Borota (Hajós-Baja wine region, Hungary) in 3 repetitions with ‘Cserszegi fűszeres’ (Vitis vinifera L.) cultivar and with two row orientations (NE-SW and NW-SE) in 2016. Two canopy managements were applied: Sylvoz cordon (S; VSP) and Modified Sylvoz cordon (MS; shoots not positioned into the wires). The presented data have been collectedon 16 August 2017. Vegetative performance of the canopies has been investigated with remote sensing technique (UAV), mounted with a Parrot Sequoia multispectral (through 4 color channels: Green, Red, Red edge and NIR) and Sony RGB camera. The drone was flying at the altitude of 120 m, NDVI index map was created with the help of Pix4D, and the 3D NDVI figure was generated with MATLAB software. Canopy size and structure were evaluated by using a Smart phone application, i.e. VitiCanopy software (De Bei et al., 2016) and the Point Quadrat (PQ,) method (Smart and Robinson, 1991). PQ data were recorded as leaf layer number, percentage of interior leaves, average canopy thickness.

Results – The photosynthetically active canopy surface proved to be larger for Modified Sylvoz cordon, which was well reflected inUAV NDVI and 3D NDVI data. Field measurements also support this observation. VitiCanopy LAI values clearlypresented this difference as well. Point Quadrat assessment drew attention to wider canopy and slightly higher interior leaves of MS cordon. Differences between row orientations need further refined studies. The MS system results in higher yield and needs less labour (only 2 mechanical trimming in the growing season) and in addition, seems to be more suitable for the desired wine style (fully aromatic fresh white wine) in the given terroir.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

B. Bálo1, N. Szobonya1, B. Vanek2, Gy. Váradi 1, P. Bodor1, F. Firtha3, Cs. Koch4

1 Department of Viticulture, Faculty of Horticultural Sciences, Szent István University, Budapest, Hungary
2 Ventus-Tech Ltd., Budapest, Hungary
3 Department of Physics-Automation, Szent István University, Budapest, Hungary
4 KOCH Winery, Borota, Hungary

Contact the author

Keywords

Canopy structure, UAV, 3D NDVI, Smart phone application, Point Quadrat

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The smoking gun of climate change in wines

In this audio recording of the IVES science meeting 2022, Antonio Graca (Sogrape, Portugal) speaks about smoke taint and climate change. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea.

CLIMATE CHANGE EFFECT ON POLYPHENOLS OF GRIGNOLINO GRAPES (VITIS VINIFERA L.) IN HILLY ENVIRONMENT

Current changes of ecoclimatic indicators may cause significant variation in grapevine phenology and grape ripening. Climate change modifies several abiotic factors (e.g. temperature, sunlight radiation, water availability) during the grapevine growth cycle, having a direct impact on the phenological stages of the grapevine, modulating the metabolic profile of berries and activating the synthesis and accumulation of diverse compounds in the skin of berries, with consequences on the composition of the grapes.
The influence exerted by different meteorological conditions, during three consecutive years (2020-2022) on secondary metabolites such as the polyphenolic profile of Grignolino grapes was investigated. The samples were collected from three vineyards characterized by different microclimatic conditions mainly related to the vineyard aspect and to a different age of the plants.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].