GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Abstract

Context and purpose of the study – Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

Material and methods – The experiment has been established in Borota (Hajós-Baja wine region, Hungary) in 3 repetitions with ‘Cserszegi fűszeres’ (Vitis vinifera L.) cultivar and with two row orientations (NE-SW and NW-SE) in 2016. Two canopy managements were applied: Sylvoz cordon (S; VSP) and Modified Sylvoz cordon (MS; shoots not positioned into the wires). The presented data have been collectedon 16 August 2017. Vegetative performance of the canopies has been investigated with remote sensing technique (UAV), mounted with a Parrot Sequoia multispectral (through 4 color channels: Green, Red, Red edge and NIR) and Sony RGB camera. The drone was flying at the altitude of 120 m, NDVI index map was created with the help of Pix4D, and the 3D NDVI figure was generated with MATLAB software. Canopy size and structure were evaluated by using a Smart phone application, i.e. VitiCanopy software (De Bei et al., 2016) and the Point Quadrat (PQ,) method (Smart and Robinson, 1991). PQ data were recorded as leaf layer number, percentage of interior leaves, average canopy thickness.

Results – The photosynthetically active canopy surface proved to be larger for Modified Sylvoz cordon, which was well reflected inUAV NDVI and 3D NDVI data. Field measurements also support this observation. VitiCanopy LAI values clearlypresented this difference as well. Point Quadrat assessment drew attention to wider canopy and slightly higher interior leaves of MS cordon. Differences between row orientations need further refined studies. The MS system results in higher yield and needs less labour (only 2 mechanical trimming in the growing season) and in addition, seems to be more suitable for the desired wine style (fully aromatic fresh white wine) in the given terroir.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

B. Bálo1, N. Szobonya1, B. Vanek2, Gy. Váradi 1, P. Bodor1, F. Firtha3, Cs. Koch4

1 Department of Viticulture, Faculty of Horticultural Sciences, Szent István University, Budapest, Hungary
2 Ventus-Tech Ltd., Budapest, Hungary
3 Department of Physics-Automation, Szent István University, Budapest, Hungary
4 KOCH Winery, Borota, Hungary

Contact the author

Keywords

Canopy structure, UAV, 3D NDVI, Smart phone application, Point Quadrat

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Consumers’ emotional responses elicited by wines according to organoleptic quality

Wine is often described with emotional terms, such as surprising, disappointing or pleasant. However, very little has been done to really characterize this link between emotions and wine. Can it really bring emotions to wine tasters? Many studies have looked at the extrinsic factors that can improve the emotional

Fully automated non-targeted GC-MS data analysis

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition.

Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Terroir is increasingly important today in wine markets. In a large wine production area such as the Loire Valley, the whole territories/terroirs can be distinguished according to different combinations of geological, soil, climatic and landscape features but are also characterized by their differences and likenesses in terms of combinations of terroir units and practices.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Update knowledge about the presence of condensed tannins in grapes and their contributions to astringency perception

Condensed tannin is a principle group of polyphenol compounds derived from grape, greatly contributing to the bioactivity and the sensory perception of wine. Condensed tannins present as a heterogeneous mixture in nature involving various degrees of both polymerization and galloylation. Even though multiple attempts focusing on fractionation of grape condensed tannins by solid-phase have been conducted over the past decades, few individual tannins have been purified and identified. Hence, our knowledge on grape and wine condensed tannin moleculars has to be limited at the several known monomeric, dimeric and trimeric proanthocyanidins