GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Abstract

Context and purpose of the study – Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

Material and methods – The experiment has been established in Borota (Hajós-Baja wine region, Hungary) in 3 repetitions with ‘Cserszegi fűszeres’ (Vitis vinifera L.) cultivar and with two row orientations (NE-SW and NW-SE) in 2016. Two canopy managements were applied: Sylvoz cordon (S; VSP) and Modified Sylvoz cordon (MS; shoots not positioned into the wires). The presented data have been collectedon 16 August 2017. Vegetative performance of the canopies has been investigated with remote sensing technique (UAV), mounted with a Parrot Sequoia multispectral (through 4 color channels: Green, Red, Red edge and NIR) and Sony RGB camera. The drone was flying at the altitude of 120 m, NDVI index map was created with the help of Pix4D, and the 3D NDVI figure was generated with MATLAB software. Canopy size and structure were evaluated by using a Smart phone application, i.e. VitiCanopy software (De Bei et al., 2016) and the Point Quadrat (PQ,) method (Smart and Robinson, 1991). PQ data were recorded as leaf layer number, percentage of interior leaves, average canopy thickness.

Results – The photosynthetically active canopy surface proved to be larger for Modified Sylvoz cordon, which was well reflected inUAV NDVI and 3D NDVI data. Field measurements also support this observation. VitiCanopy LAI values clearlypresented this difference as well. Point Quadrat assessment drew attention to wider canopy and slightly higher interior leaves of MS cordon. Differences between row orientations need further refined studies. The MS system results in higher yield and needs less labour (only 2 mechanical trimming in the growing season) and in addition, seems to be more suitable for the desired wine style (fully aromatic fresh white wine) in the given terroir.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

B. Bálo1, N. Szobonya1, B. Vanek2, Gy. Váradi 1, P. Bodor1, F. Firtha3, Cs. Koch4

1 Department of Viticulture, Faculty of Horticultural Sciences, Szent István University, Budapest, Hungary
2 Ventus-Tech Ltd., Budapest, Hungary
3 Department of Physics-Automation, Szent István University, Budapest, Hungary
4 KOCH Winery, Borota, Hungary

Contact the author

Keywords

Canopy structure, UAV, 3D NDVI, Smart phone application, Point Quadrat

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

Étude de la flore levurienne de différents terroirs alsaciens

L’utilisation de levures sélectionnées est généralement considérée comme le moyen d’éviter les problèmes fermentaires. Néanmoins de nombreux viticulteurs pensent que ces levures sont à l’origine d’une standardisation des vins et militent pour le respect d’une flore indigène (Bourguignon, 1992).

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.