GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Abstract

Context and purpose of the study – The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine. Nowadays, nutrition analysis is made with CHNS analyzer for elemental particles, and mass-spectroscopy for macro and microelements. Such methods are destructive and time consuming, then results could be obsolete for the vine grower. Near-infrared spectroscopy coupled with chemometrics tools allows to developed models of prediction that can provide accurate information about nutrition status of the vine in the field. In this study, we concentrate on the relative amount of Carbon [C], Hydrogen [H], Nitrogen [N], Sulphur [S] in dry matter (DM) and the C:N ratio.

Material and methods – 252 samples of different organs (leaves blade, leaves petioles, pea sized berries and berries at véraison) of 4 varieties (Muscat, Chasselas, Négrette and Sauvignon blanc) were analyzed. Spectrum were taken on both fresh material and dried ones with a reflectance spectrometer. The spectra were pre-processed using multiple scatter correction (MSC) and 1st and 2nd order Savitsky-Golay derivative (D1 and D2), before developing the cross-validation models using partial least square (PLS) regression and test it on a prediction set.

Results – The coefficient of determination in prediction (r²), the roots mean square error of prediction (RMSEP) and the ratio of performance of prediction (RPD) were obtained for C (0.49, 14.6% of DM and 1.33 on fresh material with MSC, 0.45, 15.4% of DM and 1.26 on dry material with MSC), H (0.56, 1.71% of DM and 1.45 on fresh material with D1, 0.49, 1.88% of DM and 1.32 on dry material with D1), N (0.91, 1.12% of DM, 3.32 on fresh material with raw spectra, 0.95, 0.84% of DM and 4.39 on dry material with MSC), S (0.47, 0.319% of DM and 1.31 on fresh material with MSC, 0.46, 0.322% of DM and 1.30 on dry material with D2) and C:N ratio (0.85, 8.20 and 2.58 on fresh material with raw spectra, 0.87, 7.55 and 2.80 on dry material with D2). Results show that the near-infrared reflectance spectroscopy can be used to assessing the level of nitrogen nutrition in vine and the C:N ratio. All model performance could be improved by increasing the number of samples.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sebastien CUQ1*, Valerie LEMETTER2, Olivier GEFFROY1, Didier KLEIBER1, Cecile LEVASSEUR-GARCIA3

1 Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-PURPAN, Toulouse, France

Contact the author

Keywords

Infrared, Spectroscopy, Elemental analysis, Vitis vinifera

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

Unique resistance traits against downy mildew from the domestication center of grapevine

The Eurasian grapevine (Vitis vinifera), an Old World species now cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola.

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors.