GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Abstract

Context and purpose of the study – The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine. Nowadays, nutrition analysis is made with CHNS analyzer for elemental particles, and mass-spectroscopy for macro and microelements. Such methods are destructive and time consuming, then results could be obsolete for the vine grower. Near-infrared spectroscopy coupled with chemometrics tools allows to developed models of prediction that can provide accurate information about nutrition status of the vine in the field. In this study, we concentrate on the relative amount of Carbon [C], Hydrogen [H], Nitrogen [N], Sulphur [S] in dry matter (DM) and the C:N ratio.

Material and methods – 252 samples of different organs (leaves blade, leaves petioles, pea sized berries and berries at véraison) of 4 varieties (Muscat, Chasselas, Négrette and Sauvignon blanc) were analyzed. Spectrum were taken on both fresh material and dried ones with a reflectance spectrometer. The spectra were pre-processed using multiple scatter correction (MSC) and 1st and 2nd order Savitsky-Golay derivative (D1 and D2), before developing the cross-validation models using partial least square (PLS) regression and test it on a prediction set.

Results – The coefficient of determination in prediction (r²), the roots mean square error of prediction (RMSEP) and the ratio of performance of prediction (RPD) were obtained for C (0.49, 14.6% of DM and 1.33 on fresh material with MSC, 0.45, 15.4% of DM and 1.26 on dry material with MSC), H (0.56, 1.71% of DM and 1.45 on fresh material with D1, 0.49, 1.88% of DM and 1.32 on dry material with D1), N (0.91, 1.12% of DM, 3.32 on fresh material with raw spectra, 0.95, 0.84% of DM and 4.39 on dry material with MSC), S (0.47, 0.319% of DM and 1.31 on fresh material with MSC, 0.46, 0.322% of DM and 1.30 on dry material with D2) and C:N ratio (0.85, 8.20 and 2.58 on fresh material with raw spectra, 0.87, 7.55 and 2.80 on dry material with D2). Results show that the near-infrared reflectance spectroscopy can be used to assessing the level of nitrogen nutrition in vine and the C:N ratio. All model performance could be improved by increasing the number of samples.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sebastien CUQ1*, Valerie LEMETTER2, Olivier GEFFROY1, Didier KLEIBER1, Cecile LEVASSEUR-GARCIA3

1 Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-PURPAN, Toulouse, France

Contact the author

Keywords

Infrared, Spectroscopy, Elemental analysis, Vitis vinifera

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of climate and soil on phenology and ripening of Vitis vinifera cv Touriga acional in the Dão region

“Terroir” has been acknowledged as an important factor in wine quality
and style. It can be defined as an interaction between climate, soil, vine (cultivar, rootstock) and human
factors such as viticultural and enological techniques. Soil and climate are the two components of the “Terroir” with an important role on the vine development and berries ripening. The present study is focused on the effects of the weather conditions and the soil characteristics on the phenological and berries ripening dynamics of the “Touriga Nacional” in Dão region.

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

Franciacorta DOCG sparkling wine interpretation in relation to wine coming from different areas

Dans la tradition classique, les vins mousseux sont le produit d’assemblage des vins d’origine différent. La choix de la typologie du moussage (brut, extra-brut, dosage zéro, etc.) généralement est une conséquence des résultats organoleptiques atteints à la fin de le période d’affinement en bouteille.

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Un “GIS” agronomico per l’area a DOC dei Colli Euganei

L’area a “Denominazione di Origine Controllata Colli Euganei”, riconosciuta con Dpr 13 agosto 1969, è situata a sud-ovest della Provincia di Padova (fig. 1) ed è costituita da un sis­tema collinare di nuclei vulcanici evolutosi morfologicamente.