GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Abstract

Context and purpose of the study – The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine. Nowadays, nutrition analysis is made with CHNS analyzer for elemental particles, and mass-spectroscopy for macro and microelements. Such methods are destructive and time consuming, then results could be obsolete for the vine grower. Near-infrared spectroscopy coupled with chemometrics tools allows to developed models of prediction that can provide accurate information about nutrition status of the vine in the field. In this study, we concentrate on the relative amount of Carbon [C], Hydrogen [H], Nitrogen [N], Sulphur [S] in dry matter (DM) and the C:N ratio.

Material and methods – 252 samples of different organs (leaves blade, leaves petioles, pea sized berries and berries at véraison) of 4 varieties (Muscat, Chasselas, Négrette and Sauvignon blanc) were analyzed. Spectrum were taken on both fresh material and dried ones with a reflectance spectrometer. The spectra were pre-processed using multiple scatter correction (MSC) and 1st and 2nd order Savitsky-Golay derivative (D1 and D2), before developing the cross-validation models using partial least square (PLS) regression and test it on a prediction set.

Results – The coefficient of determination in prediction (r²), the roots mean square error of prediction (RMSEP) and the ratio of performance of prediction (RPD) were obtained for C (0.49, 14.6% of DM and 1.33 on fresh material with MSC, 0.45, 15.4% of DM and 1.26 on dry material with MSC), H (0.56, 1.71% of DM and 1.45 on fresh material with D1, 0.49, 1.88% of DM and 1.32 on dry material with D1), N (0.91, 1.12% of DM, 3.32 on fresh material with raw spectra, 0.95, 0.84% of DM and 4.39 on dry material with MSC), S (0.47, 0.319% of DM and 1.31 on fresh material with MSC, 0.46, 0.322% of DM and 1.30 on dry material with D2) and C:N ratio (0.85, 8.20 and 2.58 on fresh material with raw spectra, 0.87, 7.55 and 2.80 on dry material with D2). Results show that the near-infrared reflectance spectroscopy can be used to assessing the level of nitrogen nutrition in vine and the C:N ratio. All model performance could be improved by increasing the number of samples.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sebastien CUQ1*, Valerie LEMETTER2, Olivier GEFFROY1, Didier KLEIBER1, Cecile LEVASSEUR-GARCIA3

1 Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-PURPAN, Toulouse, France

Contact the author

Keywords

Infrared, Spectroscopy, Elemental analysis, Vitis vinifera

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

Using remotely sensed (UAV) and in situ field measurements to describe grapevine canopy characteristics

Row orientation and canopy management are essential for high quality grapevine production. Microclimatic conditions of the leaves and fruits can be influenced by the canopy geometry. Remote sensing is a very promising tool to describe vegetative growth and physiological behavior of vineyards. However, the correlation between remotely sensed data and in situ field measurements has been described scarcely in the scientific literature so far. The aim of the study was to correlate remotely sensed data obtained with Unmanned Aerial Vehicle (UAV) with in situ field measurements to describe canopy structure.

Utilization of remote sensing technology to detect riesling vineyard variability

ineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology

Effect of pre-fermentative cold soaking and use of different enzymes on the chemical and sensory properties of Catarratto wines

The wine industry widely recognizes that early-harvested grapes or those with uneven ripeness at harvest can produce wines with an “unripe fruit” mouthfeel [1,2]. Despite this, it is still unknown which compounds cause these sensory flaws or the most effective winemaking techniques to address them.

“Garrigues”, part of the mediterranean vine terroirs

Les paysages viticoles méditerranéens présentent une originalité qui ne se retrouve nulle part ailleurs : ils associent des garrigues très odoriférantes à des parcelles de vignes souvent qualitatives. La connaissance empirique des vins du Languedoc par leurs dégustateurs a conduit la Chambre d’Agriculture de l’Hérault à supposer que les arômes de la garrigue environnante peuvent se retrouver dans les vins (arômes de ciste, de genévrier, … )