GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

Abstract

Context and purpose of the study – The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine. Nowadays, nutrition analysis is made with CHNS analyzer for elemental particles, and mass-spectroscopy for macro and microelements. Such methods are destructive and time consuming, then results could be obsolete for the vine grower. Near-infrared spectroscopy coupled with chemometrics tools allows to developed models of prediction that can provide accurate information about nutrition status of the vine in the field. In this study, we concentrate on the relative amount of Carbon [C], Hydrogen [H], Nitrogen [N], Sulphur [S] in dry matter (DM) and the C:N ratio.

Material and methods – 252 samples of different organs (leaves blade, leaves petioles, pea sized berries and berries at véraison) of 4 varieties (Muscat, Chasselas, Négrette and Sauvignon blanc) were analyzed. Spectrum were taken on both fresh material and dried ones with a reflectance spectrometer. The spectra were pre-processed using multiple scatter correction (MSC) and 1st and 2nd order Savitsky-Golay derivative (D1 and D2), before developing the cross-validation models using partial least square (PLS) regression and test it on a prediction set.

Results – The coefficient of determination in prediction (r²), the roots mean square error of prediction (RMSEP) and the ratio of performance of prediction (RPD) were obtained for C (0.49, 14.6% of DM and 1.33 on fresh material with MSC, 0.45, 15.4% of DM and 1.26 on dry material with MSC), H (0.56, 1.71% of DM and 1.45 on fresh material with D1, 0.49, 1.88% of DM and 1.32 on dry material with D1), N (0.91, 1.12% of DM, 3.32 on fresh material with raw spectra, 0.95, 0.84% of DM and 4.39 on dry material with MSC), S (0.47, 0.319% of DM and 1.31 on fresh material with MSC, 0.46, 0.322% of DM and 1.30 on dry material with D2) and C:N ratio (0.85, 8.20 and 2.58 on fresh material with raw spectra, 0.87, 7.55 and 2.80 on dry material with D2). Results show that the near-infrared reflectance spectroscopy can be used to assessing the level of nitrogen nutrition in vine and the C:N ratio. All model performance could be improved by increasing the number of samples.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Sebastien CUQ1*, Valerie LEMETTER2, Olivier GEFFROY1, Didier KLEIBER1, Cecile LEVASSEUR-GARCIA3

1 Physiologie, Pathologie et Génétique Végétales (PPGV), Université de Toulouse, INP-PURPAN, Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRA, INPT, INP-PURPAN, Toulouse, France

Contact the author

Keywords

Infrared, Spectroscopy, Elemental analysis, Vitis vinifera

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

Eleven wine-growing sites are now on the UNESCO World Heritage List as Cultural Landscapes. If the viticultural character of these sites constitutes the main argument for the demonstration of their heritage value, the terroir and its biophysical and environmental characteristics tend however to appear in a minor mode compared to the aesthetic and cultural dimensions. In other words, the “specific characteristics of the soil, topography, climate, landscape and biodiversity” (OIV definition) are most often used as descriptive elements in the presentation of the sites, but it is more the aesthetic, historical,

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

First results obtained with a terrain model to characterize the viticultural «terroirs» in Anjou (France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation.

Vers la maîtrise de l’effeuillage pré-floral de la vigne

Dans le cadre de TerclimPro 2025, Thibaut Verdenal a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8405

The role of molecular ecophysiology in terroir expression

Terroir is a complex concept which associates soil, climate, grape variety and cultural practices that include the training system and oenological techniques. It is a type of social construction with man at its centre. The typicality of a wine is also a social construction which is the result of an agreement among specialists vis à vis a given quality of the wine whose references are the wine’s origins (e.g. terroir) and taste.