GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Investigation on Valbelluna area and its oenological potentiality: case study on Prosecco DOC

Investigation on Valbelluna area and its oenological potentiality: case study on Prosecco DOC

Abstract

Context and purpose of the study – Valbelluna valley is an area located in the northeastern Italy. It is extended from the East-West between Feltre and Belluno, along the Piave waterway and enclosed between Cansiglio valley on the South and the Dolomites in the North. Here, the villages of Limana and Trichiana are present, which are considered for decades potentially interesting areas to aim a niche production with own particular properties.The position of this area, its sun exposition, its soil composition and the microclimate, are ideal factors to obtain vines and consequently wines with unique features especially regarding the diversity and complexity aroma. The viticulture is not new in Valbelluna valley, but nowadays the situation is deeply different. Up to the ‘60s the grape production was widely extended and it led 5,000/6,000 tons. The grape varieties produced were in particular hybrid such as Baco, Clinton and Isabella grapes. Viticulture and agriculture in Valbelluna suffered the countryside depopulation in particular after the Vajont disaster, that cancelled the majority of existent vines and in the postwar period, instead, there was an industrial increasing.
The aim of this study is test and develop Glera vine in a different area it used to be, always an area presents in the Prosecco DOC area: Valbelluna.

Material and methods – Some preliminary evaluations showed peculiar characteristics of Prosecco produced in this area such as marked acidity, coming from malic acid, savoury, well balanced, with a high expression and an important presence of floral aromas. Nowadays, this area is developing also the aromatic grapes production like Sauvignon, aromatic Traminer and Riesling. To have an objective evaluation about Valbelluna valley, place in which the Prosecco production is new, a study on sensorial features has carried out. It was led a comparison between Prosecco produced in Valbelluna and Prosecco coming from known DOC area in Veneto and Friuli Venezia Giulia.The sensory analysis was carried out to evaluate the Prosecco DOC position (from Valbelluna) respect the traditional one produced in DOC Veneto Friuli area and if some particular differences would have been between them.

Results – The samples analyzed were statistically significant and they were tasted from a group of expert panel. The testing sections needed to define an organoleptic profile and compare the different samples. Data were analyzed with One-way Anova and Tuckey test.The results showed differences between Prosecco DOC from Valbelluna and traditional Prosecco DOC. In particular the Prosecco DOC sensory profile (from Valbelluna) differs from the other ones because of the floral wisteria taste, the olfactory intensity and pleasantness.
The interesting results and differences in the organoleptic profile would allow next studies about the terroir potentiality in viticulture. Future investigations would have been regarding also viticultural aspects and, more in general, social aspects of Valbelluna area to define real potentiality in oenological production to promote a niche product as Prosecco DOC.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Emilio CELOTTI1*, Daniele GUADAGNINI2, Bernardo PIAZZA2, Sara ZANON1, Elisabetta BELLANTUONO1

1 Department of Agricultural, Food, Environmental and Animal Sciences, Section of Alcoholic Beverages. University of Udine, Via Sondrio 2/A, 33100, Udine (UD), Italy
2 CE.Vi.V. Centro di Vinificazione Valdobbiadenese. Via Rive 10, 31020, Vidor (TV), Italy

Contact the author

Keywords

Valbelluna, Prosecco DOC, Glera, terroir, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Comprehensive two-dimensional gas chromatography coupled with Tof-MS, a powerful tool for analysis of the volatomes of grapes and wines

Comprehensive two-dimensional gas chromatography (GCxGC) has emerged as a powerful analytical technique for unraveling the volatile composition of complex matrices. This work will present three applications of GCxGC Tof-MS to the oenological field, aimed to identify novel biomarkers to be used in the quality control process of the wine industry. Comprehensive mapping of volatile compounds was conducted in a large sample of 70 sparkling wines, produced by 48 different wineries across 6 vintages and representative of the two main production areas for premium Italian sparkling wines (Franciacorta (FC) and Trentodoc (TN)), using HS-SPME followed by GCxGC-Tof-MS and multivariate analysis. Selection and identification of 196 putative biomarkers allowed clear separation of sparkling wines from FC and TN.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

Grapesoil: An integrated model to simulate water and nitrogen fluxes in diversified vineyards

Cover crops in vineyards bring numerous benefits, including enhanced soil health, improved water infiltration, and potential pest reduction. However, they also present risks, such as reduced vine vigour and yield due to competition for water and nutrients (Celette & Gary 2013, Garcia et al., 2018).