GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Investigation on Valbelluna area and its oenological potentiality: case study on Prosecco DOC

Investigation on Valbelluna area and its oenological potentiality: case study on Prosecco DOC

Abstract

Context and purpose of the study – Valbelluna valley is an area located in the northeastern Italy. It is extended from the East-West between Feltre and Belluno, along the Piave waterway and enclosed between Cansiglio valley on the South and the Dolomites in the North. Here, the villages of Limana and Trichiana are present, which are considered for decades potentially interesting areas to aim a niche production with own particular properties.The position of this area, its sun exposition, its soil composition and the microclimate, are ideal factors to obtain vines and consequently wines with unique features especially regarding the diversity and complexity aroma. The viticulture is not new in Valbelluna valley, but nowadays the situation is deeply different. Up to the ‘60s the grape production was widely extended and it led 5,000/6,000 tons. The grape varieties produced were in particular hybrid such as Baco, Clinton and Isabella grapes. Viticulture and agriculture in Valbelluna suffered the countryside depopulation in particular after the Vajont disaster, that cancelled the majority of existent vines and in the postwar period, instead, there was an industrial increasing.
The aim of this study is test and develop Glera vine in a different area it used to be, always an area presents in the Prosecco DOC area: Valbelluna.

Material and methods – Some preliminary evaluations showed peculiar characteristics of Prosecco produced in this area such as marked acidity, coming from malic acid, savoury, well balanced, with a high expression and an important presence of floral aromas. Nowadays, this area is developing also the aromatic grapes production like Sauvignon, aromatic Traminer and Riesling. To have an objective evaluation about Valbelluna valley, place in which the Prosecco production is new, a study on sensorial features has carried out. It was led a comparison between Prosecco produced in Valbelluna and Prosecco coming from known DOC area in Veneto and Friuli Venezia Giulia.The sensory analysis was carried out to evaluate the Prosecco DOC position (from Valbelluna) respect the traditional one produced in DOC Veneto Friuli area and if some particular differences would have been between them.

Results – The samples analyzed were statistically significant and they were tasted from a group of expert panel. The testing sections needed to define an organoleptic profile and compare the different samples. Data were analyzed with One-way Anova and Tuckey test.The results showed differences between Prosecco DOC from Valbelluna and traditional Prosecco DOC. In particular the Prosecco DOC sensory profile (from Valbelluna) differs from the other ones because of the floral wisteria taste, the olfactory intensity and pleasantness.
The interesting results and differences in the organoleptic profile would allow next studies about the terroir potentiality in viticulture. Future investigations would have been regarding also viticultural aspects and, more in general, social aspects of Valbelluna area to define real potentiality in oenological production to promote a niche product as Prosecco DOC.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Emilio CELOTTI1*, Daniele GUADAGNINI2, Bernardo PIAZZA2, Sara ZANON1, Elisabetta BELLANTUONO1

1 Department of Agricultural, Food, Environmental and Animal Sciences, Section of Alcoholic Beverages. University of Udine, Via Sondrio 2/A, 33100, Udine (UD), Italy
2 CE.Vi.V. Centro di Vinificazione Valdobbiadenese. Via Rive 10, 31020, Vidor (TV), Italy

Contact the author

Keywords

Valbelluna, Prosecco DOC, Glera, terroir, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

Le Pinot noir dans la zone AOC des “Colli Orientali del Friuli” (nord-est de l’Italie) : influence de la forme de taille sur les paramètres viticoles et œnologiques du raisin et du vin

Pinot noir is an interesting vat variety for the high quality products it provides in the most suitable areas. In France, the most important Pinot Noir growing areas are Burgundy, Champagne, Alsace and the Loire. In Italy, Pinot Noir is grown almost exclusively in the northern regions of Trentino-Alto Adige, Lombardy and Friuli-Venezia Giulia.

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.