IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Aromas of Riesling wine: impact of bottling and storage conditions

Aromas of Riesling wine: impact of bottling and storage conditions

Abstract

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace. The wine bottles were stored in warm (~25 °C) or cool (~15 °C) conditions for 6-24 months.The main families of Riesling varietal aromas are monoterpenes and C13-norisoprenoids. The central question of this study was to investigate their transformations under different bottling conditions: reductive and oxidative. In particular, how to preserve fruity/floral monoterpenes such as linalool and to limit the formation of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN).GC-MS analysis showed that the content of linalool was decreasing during the wine storage, and higher temperature induced its faster degradation and the formation of linalool oxides. Surprisingly, reductive conditions (higher free SO2 level in wine and CO2 in the headspace) had no considerable impact on the preserving of linalool and the formation of its oxides.TDN is important C13-norisoprenoid, which is formed during the aging of Riesling wine. TDN has kerosene/diesel aromas that add complexity to the wine bouquet, but become undesirable when its content becomes high. Therefore, enological and other strategies for managing TDN in wine are of interest. There are various studies, which discuss the influence of oxygen on the formation or degradation of TDN in wine [4,5]. As shown in our investigation, the TDN content is not strongly related to the oxidative or reductive conditions in wine, and was not significantly influenced by the studied bottling parameters. The main factor inducing the TDN formation was elevated storage temperature.In addition, secondary wine aromas and low molecular weight sulfur compounds were analyzed by GC. Also a sensory analysis was performed.In conclusions, the lower SO2 level in wine and higher oxygen content in the headspace had a limited impact on the varietal and secondary aromas of Riesling wine. However, the development of oxidative aromas was more intense in the wines under these “oxidative” bottling conditions. As a result, these wines were distinguished in sensory analysis as more oxidized already after 6 months of storage in warm conditions.

References

[1] Giuffrida de Esteban, M.L.; Ubeda, C.; Heredia, F.J.; Catania, A.A.; Assof, M.V.; Fanzone, M.L.; Jofre, V.P. Impact of Closure Type and Storage Temperature on Chemical and Sensory Composition of Malbec Wines (Mendoza, Argentina) during Aging in Bottle. Food Res. Int. 2019, 125, 108553, doi:10.1016/j.foodres.2019.108553.
[2] Cejudo‐Bastante, M.J.; Hermosín‐Gutiérrez, I.; Pérez‐Coello, M.S. Accelerated Aging against Conventional Storage: Effects on the Volatile Composition of Chardonnay White Wines. J. Food Sci. 2013, 78, C507–C513, doi:https://doi.org/10.1111/1750-3841.12077.
[3] Tarasov, A.; Garzelli, F.; Schuessler, C.; Fritsch, S.; Loisel, C.; Pons, A.; Patz, C.-D.; Rauhut, D.; Jung, R. Wine Storage at Cellar vs. Room Conditions: Changes in the Aroma Composition of Riesling Wine. Molecules 2021, 26, doi:10.3390/molecules26206256.
[4] Silva Ferreira, A.C.; Guedes de Pinho, P. Nor-Isoprenoids Profile during Port Wine Ageing—Influence of Some Technological Parameters. Anal. Chim. Acta 2004, 513, 169–176, doi:10.1016/j.aca.2003.12.027.
[5] Skouroumounis, G.K.; Kwiatkowski, M.J.; Francis, I.L.; Oakey, H.; Capone, D.L.; Peng, Z.; Duncan, B.; Sefton, M.A.; Waters, E.J. The Influence of Ascorbic Acid on the Composition, Colour and Flavour Properties of a Riesling and a Wooded Chardonnay Wine during Five Years’ Storage. Aust. J. Grape Wine Res. 2005, 11, 355–368, doi:10.1111/j.1755-0238.2005.tb00035.x.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Tarasov Andrii1, Garzelli Frederico1, Schuessler Christoph1, Fritsch Stefanie2, Platz Claus3, Rauhut Doris2 and Jung Rainer1

1Department of Enology, Hochschule Geisenheim University
2Department of Microbiology and Biochemistry, Hochschule Geisenheim University
3Department of Beverage Research, Hochschule Geisenheim University

Contact the author

Keywords

Riesling wine, aging, TDN, oxidation, sulfur dioxide

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).

The Hungarian system of geographical indications and the preparation of product specifications

Following the 2008-2009 reform of the European Union’s common market organisation in wine all protected designations of origin and geographical indications were imposed to prepare a product specification that described the conditions of their use. In this paper, we describe this process and the Hungarian system of geographical indications.

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

Towards a spatial analysis of antique viticultural areas: the case study of Amos (Turkey) and some other places

Interpretation of ancient texts, such as the Amos epigraphic farming leases, questions both locations and spatial extents of the viticultural area, as well as soils, landscapes, cropping methods

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.