GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

Abstract

Context and purpose of the study – ThePrecision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir. On the one hand, the soil is the factor of the terroir of shortest wave; it means that it is the factor that has the most horizontal variability (geography, cartography) as well as vertical (typology, classification). Besides, due to its properties, mainly as a production factor, the soil is the factor that can easily be modified by the wine-grower and it can be adapted it his interests by the PV, for example. For this reason, the Terroir Variability Map (TVM) is a necessary management tool in PV and it has to join enough conditions of both cartographic quality (scale, predictivity and precision), and content (characterization, quantification, classification and evaluation). This work is about of the most efficient choice of the soil classification in relationship with best application of TVM related to traceability and technology transfer in the viticulture.

Material and methods – The main characteristics of the most important two soil classifications, exactly the World Reference Base for Soil Resources (FAO system) and the Soil Taxonomy (USDA system) are compared, in relationship with their application in the TVM for its use in the PV.

Results – Three types of TVM related to the terroir zoning studies are defined: a) The inventory maps (generalized studies; orders 4, 5 and 6) are useful to identify the possible variability elements of terroir in a wide region with null or slight rate in vineyard occupation and that includes a valuation of these elements. In the inventory TVM, scales of less than 1: 50,000 are used. In 1: 250,000 or lower scales it is possible to use the FAO system but in upper scales it is preferable to use the USDA system in a subgroup level and in which soil phases are included. All the map units of the result are politáxicas. The application of these TVM determines the possible capacity of viticultural use in certain subzones and the exclusion of others; b) The management maps (macrozoning studies; orders 2 and 3); are useful to do an identification, characterization and evaluation of the terroir in a certain wine-growing region. In the management TVM scales between 1: 30,000 and 1: 15,000 are used. It is not possible the use of FAO system and it is necessary the use USDA system at the categorical level of families or series, including phases. Politaxic soil map units they are predominant. In these TVM the quality of the different terroir is determined, but the map unit they belong to is not, and because of this they can only be used to management of the wine-growing region (for example, on the DO), and it can’t be used for instance to do direct recommendations about the management to the vine-grower about or for the Precision Viticulture; and c) In executive maps (microzoning studies; order 1), scales upper 1: 10,000 (preferably higher than 1: 5,000) are used and it is not possible the use of FAO system, and it is necessary to use USDA system at the categorical level of soil series, including very specific phases and related to terroir. All these soil map units are monotaxics. In these TVM it determines the quality of the terroir and the map unit they belong to and so they can be used for management of the wine-growing region, farm or plot and mainly to do direct recommendations to the vine-grower in the PV application.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vicente D. GÓMEZ-MIGUEL1

1Universidad Politécnica de Madrid; c/ Puerta de Hierro, 2; 28040-Madrid, Spain

Contact the author

Keywords

zoning, terroir, soil, precision viticulture, Terror Variability Map

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Use of the soils information system for detailed vineyard soil surveys and as a component of precision viticulture

Vineyard soil surveys can be costly and time consuming. The Soils Information System (SIS) provides a set of tools to do a quick evaluation of soil physical properties in the vineyard. First, a system equipped with GPS and EM38 equipment, provides a very precise DEM and a soil electrical conductivity map. Specific sampling points are located for a tractor-mounted geotechnical probe to make soil physical measurements.

Prediction of astringency in red wine using tribology approach to study in-mouth perception

AIM Astringency is described as a ‘dry puckering‐like sensation’ following consumption of tannins1 that affect consumer preference of foods and beverages, including red wine2. To improve the understanding of astringency, which is a complex interaction due to multiple mechanisms occurring simultaneously, further studies are needed. In this view, oral tribology is considered a useful technique for beverage study to evaluate the thin-film lubrication properties of saliva resulting in oral friction‐related sensations3. The aim of this study was to examine the film behavior of selected protein-based fluids under controlled friction conditions, to understand polyphenol-protein interactions involved in the sensation of astringency.

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.