GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

Abstract

Context and purpose of the study – ThePrecision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir. On the one hand, the soil is the factor of the terroir of shortest wave; it means that it is the factor that has the most horizontal variability (geography, cartography) as well as vertical (typology, classification). Besides, due to its properties, mainly as a production factor, the soil is the factor that can easily be modified by the wine-grower and it can be adapted it his interests by the PV, for example. For this reason, the Terroir Variability Map (TVM) is a necessary management tool in PV and it has to join enough conditions of both cartographic quality (scale, predictivity and precision), and content (characterization, quantification, classification and evaluation). This work is about of the most efficient choice of the soil classification in relationship with best application of TVM related to traceability and technology transfer in the viticulture.

Material and methods – The main characteristics of the most important two soil classifications, exactly the World Reference Base for Soil Resources (FAO system) and the Soil Taxonomy (USDA system) are compared, in relationship with their application in the TVM for its use in the PV.

Results – Three types of TVM related to the terroir zoning studies are defined: a) The inventory maps (generalized studies; orders 4, 5 and 6) are useful to identify the possible variability elements of terroir in a wide region with null or slight rate in vineyard occupation and that includes a valuation of these elements. In the inventory TVM, scales of less than 1: 50,000 are used. In 1: 250,000 or lower scales it is possible to use the FAO system but in upper scales it is preferable to use the USDA system in a subgroup level and in which soil phases are included. All the map units of the result are politáxicas. The application of these TVM determines the possible capacity of viticultural use in certain subzones and the exclusion of others; b) The management maps (macrozoning studies; orders 2 and 3); are useful to do an identification, characterization and evaluation of the terroir in a certain wine-growing region. In the management TVM scales between 1: 30,000 and 1: 15,000 are used. It is not possible the use of FAO system and it is necessary the use USDA system at the categorical level of families or series, including phases. Politaxic soil map units they are predominant. In these TVM the quality of the different terroir is determined, but the map unit they belong to is not, and because of this they can only be used to management of the wine-growing region (for example, on the DO), and it can’t be used for instance to do direct recommendations about the management to the vine-grower about or for the Precision Viticulture; and c) In executive maps (microzoning studies; order 1), scales upper 1: 10,000 (preferably higher than 1: 5,000) are used and it is not possible the use of FAO system, and it is necessary to use USDA system at the categorical level of soil series, including very specific phases and related to terroir. All these soil map units are monotaxics. In these TVM it determines the quality of the terroir and the map unit they belong to and so they can be used for management of the wine-growing region, farm or plot and mainly to do direct recommendations to the vine-grower in the PV application.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vicente D. GÓMEZ-MIGUEL1

1Universidad Politécnica de Madrid; c/ Puerta de Hierro, 2; 28040-Madrid, Spain

Contact the author

Keywords

zoning, terroir, soil, precision viticulture, Terror Variability Map

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Spatial variability of vine productivity in winegrapes is important to characterise as both yield and quality are relevant for the production of different wine styles and products. The objectives were to understand how patterns of variability of Cabernet Sauvignon fruit composition changed over time and space, how these patterns could be characterised with indirect measurements, and how spatial patterns of the variation in fruit compositional attributes can aid in improving management. Prior to the 2017 vintage, 125 data vines were distributed across each of four vineyards in the Lodi American Viticultural Area (AVA) of California. Each data vine was sampled at commercial harvest in 2017, 2018, and 2019. Yield components and fruit composition were measured at harvest for each data vine, and maps of yield and fruit composition were produced for eight ‘objective measures of fruit quality’: total anthocyanins, polymeric tannins, quercetin glycosides, malic acid, yeast assimilable nitrogen, β-damascenone, C6 alcohols and aldehydes, and 3-isobutyl-2-methoxypyrazine. Patterns of variation in anthocyanins and phenolic compounds were found to be most stable over time. Given this relative stability, management decisions focused on fruit quality could be based on zonal descriptions of anthocyanins or phenolics to increase profitability in some vineyards. In each vineyard, dormant season pruning weights and soil cores were collected at each location, elevation and soil apparent electrical conductivity surveys were completed, and remotely sensed imagery was captured by fixed wing aircraft and two satellite platforms at major phenological stages. The data collected were used to develop relationships among biophysical data, soil, imagery, and fruit composition. The standardised and aggregated samples from four vineyards over three seasons were included in the estimation of ‘common variograms’ to assess how this technique could aid growers in producing geostatistically rigorous maps of fruit composition variability without cumbersome, single season sampling efforts.

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The abbreviation AOC designates, since 1905 in France, wines which characteristics and reputation are due to a proper “terroir”. The delimitation of such “terroirs” consists in a technical and statutory procedure which has developed by steps.

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.