GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

Abstract

Context and purpose of the study – ThePrecision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir. On the one hand, the soil is the factor of the terroir of shortest wave; it means that it is the factor that has the most horizontal variability (geography, cartography) as well as vertical (typology, classification). Besides, due to its properties, mainly as a production factor, the soil is the factor that can easily be modified by the wine-grower and it can be adapted it his interests by the PV, for example. For this reason, the Terroir Variability Map (TVM) is a necessary management tool in PV and it has to join enough conditions of both cartographic quality (scale, predictivity and precision), and content (characterization, quantification, classification and evaluation). This work is about of the most efficient choice of the soil classification in relationship with best application of TVM related to traceability and technology transfer in the viticulture.

Material and methods – The main characteristics of the most important two soil classifications, exactly the World Reference Base for Soil Resources (FAO system) and the Soil Taxonomy (USDA system) are compared, in relationship with their application in the TVM for its use in the PV.

Results – Three types of TVM related to the terroir zoning studies are defined: a) The inventory maps (generalized studies; orders 4, 5 and 6) are useful to identify the possible variability elements of terroir in a wide region with null or slight rate in vineyard occupation and that includes a valuation of these elements. In the inventory TVM, scales of less than 1: 50,000 are used. In 1: 250,000 or lower scales it is possible to use the FAO system but in upper scales it is preferable to use the USDA system in a subgroup level and in which soil phases are included. All the map units of the result are politáxicas. The application of these TVM determines the possible capacity of viticultural use in certain subzones and the exclusion of others; b) The management maps (macrozoning studies; orders 2 and 3); are useful to do an identification, characterization and evaluation of the terroir in a certain wine-growing region. In the management TVM scales between 1: 30,000 and 1: 15,000 are used. It is not possible the use of FAO system and it is necessary the use USDA system at the categorical level of families or series, including phases. Politaxic soil map units they are predominant. In these TVM the quality of the different terroir is determined, but the map unit they belong to is not, and because of this they can only be used to management of the wine-growing region (for example, on the DO), and it can’t be used for instance to do direct recommendations about the management to the vine-grower about or for the Precision Viticulture; and c) In executive maps (microzoning studies; order 1), scales upper 1: 10,000 (preferably higher than 1: 5,000) are used and it is not possible the use of FAO system, and it is necessary to use USDA system at the categorical level of soil series, including very specific phases and related to terroir. All these soil map units are monotaxics. In these TVM it determines the quality of the terroir and the map unit they belong to and so they can be used for management of the wine-growing region, farm or plot and mainly to do direct recommendations to the vine-grower in the PV application.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Vicente D. GÓMEZ-MIGUEL1

1Universidad Politécnica de Madrid; c/ Puerta de Hierro, 2; 28040-Madrid, Spain

Contact the author

Keywords

zoning, terroir, soil, precision viticulture, Terror Variability Map

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Oxidability of wines made from Spanish minority grape varieties

The phenolic profile of a wine plays an essential role in its oxidative capacity and in both white and red wines it defines its shelf life[1]. The study of minority varieties to produce wines with peculiar characteristics necessarily includes the phenolic and oxidative characterization of the wines produced. This paper presents the study of wines made from 24 minority and majority white and red grape varieties, focusing on phenolic characteristics (total phenols, slightly polymerized phenols, highly polymerized phenols, anthocyanins…), color, as well as parameters related to the oxidability of the wines and their capacity to consume oxygen [2].

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Role of VvNCED1 in β-damascenone and abscisic acid biosynthesis: new insights into aroma development in grapes

β-Damascenone is a key norisoprenoid in grape (Vitis vinifera L.) that imparts floral and fruity aromas to both fruits and wines. It is derived from carotenoid metabolism, with neoxanthin as a substrate.

Manipulating grapevine bud fruitfulness

Bud fruitfulness is a key component of reproductive performance of grapevine. It plays a significant role in annual yield variation of vineyards as it is a prerequisite of crop production in the following season. Various exogenous and endogenous factors influencing the development of inflorescence primordia (IP) have been studied. However, the research on molecular genetic control of bud fruitfulness, especially how it interacts with environmental factors is still lacking. This study aims to investigate the molecular mechanism of effects of temperature and light on grapevine bud fruitfulness during initiation and differentiation of IP.

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition.