GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

Abstract

Introduction: The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural environment and the action of the human, which modulates the territory to give the different wine landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Methods: Landscape images before and after the implantation of different vineyards, so as after the abandonment of some vineyard cultivation were studied to evaluate changes of landscapes from ecological and sustainable points of view. Furthermore, economical aspects were also considered. 

Integral program and objective: This study is a component of a general program of terroir analysis conducted in Spain and that expanding over 5.5 million hectares and includes 370,000 ha of vineyards, using analysis scale of 1:50.000 or 1:25.000, depending on the region (Integral Viticultural Zoning, Gómez-Miguel & Sotés 1992-2018). This work is focused on the special case of AO Ribera del Duero, which landscape has evolved intensively in the last decades. So, the main aim was the analysis of the effect of the temporary evolution (1952/2017) of the vineyard extension in the DO Ribera del Duero territory on its landscape, and its repercussion on the sustainable value of this territory.

Results: The study pointed out both positive and negative effect of the human factor on the landscape due to the vine cultivation. Consolidate viticulture landscape demands continue human action to prevent landscape deterioration, and new plantation obviously modifies the natural landscape, however the changes can also have positive effects, as for example ecological ones when erosion is reduced, or social and economic ones, when new attractive landscapes are created, and they will be used as an enotourism attraction.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

María L. GONZÁLEZ-SANJOSÉ1*, Vicente D. GÓMEZ-MIGUEL2

1 Dpto of Biotechnology and Food, Science, Burgos University, Plaza Misael Bañuelos s/n, 09001 Burgos
2 Universidad Politécnica de Madrid; c/ Puerta de Hierro, 2; 28040-Madrid, Spain

Contact the author

Keywords

viticulture, zoning, landscape, sustainability, enoturism, remote sensing

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Circular economy strategies to reintegrate grape pomace from cv. Lagrein into the food chain

The project REALISM (regionality and circular economy in food products to counteract the Metabolic Syndrome (M.S.)) was initiated to develop antioxidant-rich food products with the ability to reduce the risk of developing the M.S.

Marketing and zoning (“Great Zoning”): researches and various considerations

Dans de précédents travaux sur le zonage “GRANDE ZONAZIONE” (GZ) (“Grand Zonage”), on a traité, entre autre, de la “GRANDE FILIERA” (GF) (Grande filière) où parmi les 54 descripteurs prévus pour lire et évaluer par exemple un zonage, sont compris aussi la Communication

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars