GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Abstract

Context and purpose of study – Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Material and methods – In a series of field trials in vineyards, different implements namely rippers, various types of delve ploughs, excavators, as well as different tillage depths and soil types were investigated. The effect of soil preparation was measured in terms of and root growth and above-ground grapevine performance, penetrometer resistance and the longevity of soil profile modification.

Results – A reduction in available soil volume decreases the grapevine root system and subsequently also shoot growth and yield. The first sign of soil compaction is uneven growth which may eventually progress to dead patches in a vineyard. Results showed that the soil must be loosened to a depth of at least 800 mm, but preferably to one meter. Adequate soil depth could compensate for lack of irrigation in the coastal region of the Western Cape. The correct choice of implement for soil preparation is determined by soil type. The South African wine and table grape industries have access to an array of implements that can deal effectively with diverse soil conditions. Effective soil preparation means that the soil is uniformly loosened to a depth of at least 800 mm, that poor subsoil is not brought to the surface and that the loose soil has a good structure i.e. no large clods which cannot be exploited by roots.Soil water content determines to a large extent the effectiveness of implement action. Soils that are too dry break up in large clods and require maximum draw power. Soils that are too wet when tilled, result in poor crumbling and wheel slip. Conditions for preparation are best when the soil surface is dry to ensure good traction for tractors while the subsoil is still moist. Deep tillage in two directions may be necessary when a uniformly loose medium is not achieved with working in one direction or better mixing is required. The application of soil ameliorants during soil preparation is essential. This practice provides the only opportunity to apply lime on acid soils, remedy low P contents in the subsoil and also incorporate gypsum in the subsoil for the reclamation of saline soils. Loose soil re-compact after soil preparation and such re-compaction is especially harmful in newly planted vineyards. Results on the longevity of soil preparation before re-compaction occurs, are presented.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

J E HOFFMAN and J L van ZYL

Department of Soil Science, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil preparation, soil depth, ameliorants, re-compaction, root distribution, grapevine performance

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Organic and biodynamic sustainable productions and effect on eligibility and peculiarity of a typical wine

The wine industry is currently shifting toward more sustainable production systems. There are many reasons for this as the interest of people over climate change and, consequently the wine consumer’s choice toward organic and biodynamic, reduced carbon-footprint, vegan and other environmentally friendly wines. While the viticultural effects of biodynamic and organic practices on wine grapes have been investigated, there is a lack in literature on the general effect on the final quality of wine

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in

Improvement of the red wine AOC Grignolino d’Asti typicality using some technological innovations

L’AOC Grignolino d’Asti (20000 hl environ de production) est un vin de la province de Asti, produit avec le raisin rouge du cépage de même nom originaire du Piémont (Nord-Ouest d’Italie).

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.