GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Abstract

Context and purpose of study – Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Material and methods – In a series of field trials in vineyards, different implements namely rippers, various types of delve ploughs, excavators, as well as different tillage depths and soil types were investigated. The effect of soil preparation was measured in terms of and root growth and above-ground grapevine performance, penetrometer resistance and the longevity of soil profile modification.

Results – A reduction in available soil volume decreases the grapevine root system and subsequently also shoot growth and yield. The first sign of soil compaction is uneven growth which may eventually progress to dead patches in a vineyard. Results showed that the soil must be loosened to a depth of at least 800 mm, but preferably to one meter. Adequate soil depth could compensate for lack of irrigation in the coastal region of the Western Cape. The correct choice of implement for soil preparation is determined by soil type. The South African wine and table grape industries have access to an array of implements that can deal effectively with diverse soil conditions. Effective soil preparation means that the soil is uniformly loosened to a depth of at least 800 mm, that poor subsoil is not brought to the surface and that the loose soil has a good structure i.e. no large clods which cannot be exploited by roots.Soil water content determines to a large extent the effectiveness of implement action. Soils that are too dry break up in large clods and require maximum draw power. Soils that are too wet when tilled, result in poor crumbling and wheel slip. Conditions for preparation are best when the soil surface is dry to ensure good traction for tractors while the subsoil is still moist. Deep tillage in two directions may be necessary when a uniformly loose medium is not achieved with working in one direction or better mixing is required. The application of soil ameliorants during soil preparation is essential. This practice provides the only opportunity to apply lime on acid soils, remedy low P contents in the subsoil and also incorporate gypsum in the subsoil for the reclamation of saline soils. Loose soil re-compact after soil preparation and such re-compaction is especially harmful in newly planted vineyards. Results on the longevity of soil preparation before re-compaction occurs, are presented.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

J E HOFFMAN and J L van ZYL

Department of Soil Science, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil preparation, soil depth, ameliorants, re-compaction, root distribution, grapevine performance

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Oenological potential of wines and agronomical characterisation of grapes from five white resistant Italian varieties at Serra Gaúcha, Southern Brazil

Rio grande do sul is the main grape producing state in Brazil, with the largest wine-growing area, responsible by 90% of the national production of wines and grape juices. Serra Gaúcha is the main vitivinicultural region, where around 15% of the area is destined to produce wines from vitis vinifera L. grapes. This region presents high rainfall during the grape maturation cycle, a factor that leads to great risk of attacks by fungal pathogens. the use of resistant varieties can reduce the cost and quantity of spraying, improving wine quality, focusing on a sustainable vitiviniculture.

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Sur la réalité du lien entre le terroir et le produit : de l’analyse sémantique à l’approche écologique

The reflections presented here are a synthesis of a set of research on the construction of a scientific logic concerning the relations between the terroir, the vine, the wine, and on the study of a product, the wine, considered as the resulting from many interactions between factors of various orders. This work has benefited greatly from discussions of an epistemological as well as a technical nature with all the researchers at URVV (Angers) and with our colleagues at the Institut National des Appellations d’Origine, over several years.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.