GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Soil preparation practices to eliminate soil restrictions to grapevine root distribution for the establishment of sustainable vineyards

Abstract

Context and purpose of study – Grapevine yield and wine quality are dependent on good quality vegetative growth and root development. Soils that restrict proper grapevine root development, together with the high cost of establishing a new vineyard, require effective soil preparation to sustain productive vineyards for 25 years. This study reviews soil preparation research conducted over the past 50 years and identifies best practices to remove soil physical and chemical impediments to create optimum conditions for root growth.

Material and methods – In a series of field trials in vineyards, different implements namely rippers, various types of delve ploughs, excavators, as well as different tillage depths and soil types were investigated. The effect of soil preparation was measured in terms of and root growth and above-ground grapevine performance, penetrometer resistance and the longevity of soil profile modification.

Results – A reduction in available soil volume decreases the grapevine root system and subsequently also shoot growth and yield. The first sign of soil compaction is uneven growth which may eventually progress to dead patches in a vineyard. Results showed that the soil must be loosened to a depth of at least 800 mm, but preferably to one meter. Adequate soil depth could compensate for lack of irrigation in the coastal region of the Western Cape. The correct choice of implement for soil preparation is determined by soil type. The South African wine and table grape industries have access to an array of implements that can deal effectively with diverse soil conditions. Effective soil preparation means that the soil is uniformly loosened to a depth of at least 800 mm, that poor subsoil is not brought to the surface and that the loose soil has a good structure i.e. no large clods which cannot be exploited by roots.Soil water content determines to a large extent the effectiveness of implement action. Soils that are too dry break up in large clods and require maximum draw power. Soils that are too wet when tilled, result in poor crumbling and wheel slip. Conditions for preparation are best when the soil surface is dry to ensure good traction for tractors while the subsoil is still moist. Deep tillage in two directions may be necessary when a uniformly loose medium is not achieved with working in one direction or better mixing is required. The application of soil ameliorants during soil preparation is essential. This practice provides the only opportunity to apply lime on acid soils, remedy low P contents in the subsoil and also incorporate gypsum in the subsoil for the reclamation of saline soils. Loose soil re-compact after soil preparation and such re-compaction is especially harmful in newly planted vineyards. Results on the longevity of soil preparation before re-compaction occurs, are presented.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

J E HOFFMAN and J L van ZYL

Department of Soil Science, Stellenbosch University, Stellenbosch, 7602, Republic of South Africa

Contact the author

Keywords

soil preparation, soil depth, ameliorants, re-compaction, root distribution, grapevine performance

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies

The effect of water stress deficit on ‘Xynisteri’ grapes through systems biology approaches

Cyprus is one of the very few phyloxera-free areas worldwide where the vast majority of vines are own-rooted and non-irrigated. ‘Xynisteri’ is a predominant indigenous cultivar, particularly amenable to extreme conditions such as drought and hot climate, thus rendering it appropriate for marginal soils and adverse climatic conditions. In the current work, a comparative study between irrigated (irrigation initiated at BBCH 71) and non-irrigated vines was conducted.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.