GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

Abstract

Context and purpose of the study – Phenolic compounds are located in skins and seeds and are responsible for important sensory and quality attributes of red grapes and wines, such as astringency, bitterness and colour. However, little is known regarding Greek varieties.The aim of this study is to evaluate the grape phenolic content and to present data that characterize the red grape variety Xinomavro (Vitis Vinifera L. cv.) from different wine regions of Greece.

Material and methods – In this study berry attributes, skin and seed content of phenolic compounds of 18 grape samples from four different regions in Greece, namely Naoussa, Amyntaino, Goumenissa and Rapsani were analyzed. Skins and seeds were removed from berries and different solvents were used in them for the extraction of anthocyanins and tannins. For tannin estimation, the protein precipitation assay using bovine serum albumin was employed. Anthocyanins were determined in skins by High-performance liquid chromatography (HPLC).

Results – According to the results, significant differences were observed in berry weight among the different regions, however the distribution of berry components in mature berries, % skin per berry and % seed per berry weight ratio, had no difference between the samples. The contribution of skins and seeds in berry were 8.1% and 2.6%, respectively. The higher content of total tannins and total anthocyanins in berries were observed in grapes from Amyntaio region. Grapes from Naoussa region had the lower concentrations of skin tannins and total anthocyanins. Finally, the lower concentrations of seed tannins were determined in Goumenissa grapes.

DOI:

Publication date: September 8, 2023

Issue: GIESCO 2019

Type: Poster

Authors

Maria KYRALEOU1, Stamatina KALLITHRAKA1, Eugenia GKANIDI1, Stefanos KOUNDOURAS2

1 Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
2 Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

Contact the author

Keywords

grapes, anthocyanins, tannins, HPLC, Greek winegrape varieties

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Climatic zoning of the Ibero-American viticultural regions

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”.

Comportement hydrique des sols viticoles et leur influence sur le terroir

L’étude des relations Terroir – Vigne – Raisin est complexe. La recherche et le développement des facteurs qualitatifs qui influencent le caractère des vins sont multiples. Divers travaux mettent en évidence la relation entre l’alimentation en eau de la plante, son développement végétatif et les caractéristiques de ses raisins.

Development of a strategy for measuring fruity aroma potential in red wine

Levels of esters derived from substituted acids increase during the first years of aging and some of them are strongly involved in red wine fruity aromatic expression.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.