GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

Abstract

Context and purpose of the study – Phenolic compounds are located in skins and seeds and are responsible for important sensory and quality attributes of red grapes and wines, such as astringency, bitterness and colour. However, little is known regarding Greek varieties.The aim of this study is to evaluate the grape phenolic content and to present data that characterize the red grape variety Xinomavro (Vitis Vinifera L. cv.) from different wine regions of Greece.

Material and methods – In this study berry attributes, skin and seed content of phenolic compounds of 18 grape samples from four different regions in Greece, namely Naoussa, Amyntaino, Goumenissa and Rapsani were analyzed. Skins and seeds were removed from berries and different solvents were used in them for the extraction of anthocyanins and tannins. For tannin estimation, the protein precipitation assay using bovine serum albumin was employed. Anthocyanins were determined in skins by High-performance liquid chromatography (HPLC).

Results – According to the results, significant differences were observed in berry weight among the different regions, however the distribution of berry components in mature berries, % skin per berry and % seed per berry weight ratio, had no difference between the samples. The contribution of skins and seeds in berry were 8.1% and 2.6%, respectively. The higher content of total tannins and total anthocyanins in berries were observed in grapes from Amyntaio region. Grapes from Naoussa region had the lower concentrations of skin tannins and total anthocyanins. Finally, the lower concentrations of seed tannins were determined in Goumenissa grapes.

DOI:

Publication date: September 8, 2023

Issue: GIESCO 2019

Type: Poster

Authors

Maria KYRALEOU1, Stamatina KALLITHRAKA1, Eugenia GKANIDI1, Stefanos KOUNDOURAS2

1 Department of Food Science & Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
2 Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

Contact the author

Keywords

grapes, anthocyanins, tannins, HPLC, Greek winegrape varieties

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

On the meaning of looking for terroir perceptions in blind tastings

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.