OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Mitigating the effects of climate change on berry composition by canopy management

Mitigating the effects of climate change on berry composition by canopy management


Primary and secondary metabolites are major components of grape composition and their balances define wine typicality. Global climate change is modifying vine physiology and especially the composition of grape berries at harvest, by decoupling phenolic and aromatic maturities (depending on secondary metabolites) from technical maturity (depending on primary metabolites). These modifications can be limited through vineyard management. One of the rapid and efficient ways to mitigate the effects of climate change is to modify vine canopy, thus modifying the relationships between source and sink. 

To face this challenge, we used Vitis vinifera cv. Cabernet Sauvignon plants 1) to analyse the response of yield and biochemical composition in ripening berries, including sugars, organic acids, amino acids, phenolic compounds (anthocyanins, flavonols) and aroma molecular makers including methoxypyrazines associated with the green character (low ripenning), volatile thiols (and their precursors), as well as furanones and lactones linked with the cooked/dried fruit aromas (overipenning), with UHPLC, GC-MS and LC-MS analyses; 2) to link the changes in berry composition with wine quality by microvinification sensory analysis; 3) to study the response of berry transcriptome to canopy manipulation, by RNAseq or qPCR analyses. 

 The results showed that metabolites had different sensitivities to the modulation of leaf-to-fruit ratios, demonstrating that it is possible to determine an optimal leaf/fruit ratio to reduce sugar concentration in the berry without much impact on the typicality of Bordeaux wines


We thank the CIVB for financial support to the CANOGRAPE project N ° 44233 and France AgriMer for financial support to CANABA project N°414


Publication date: June 9, 2020

Issue: OENO IVAS 2019

Type: Article


Sabine Guillaumie (1), Eloïse Brouard (1), Lina Wang (1), Ghislaine Hilbert (1), Cécile Thibon (2), Isabelle Merlin (1), Alexandre Pons (2,3), Christel Renaud (1), Claudine Trossat-Magnin (1), Nathalie Ollat (1), Serge Delrot (1), Philippe Darriet (2), Eric Gomès (a), Zhanwu Dai (1), Sabine Guillaumie (1)

(1) UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France
(2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(3) SEGUIN MOREAU France, Cognac, France

Contact the author


climate change, leaf/fruit ratio, berry composition, wine


IVES Conference Series | OENO IVAS 2019


Related articles…

Relationships between sensitivity to high temperature, stomatal conductance and vegetative architecture in a set of grapevine varieties

High temperatures influence plant development and induce a large set of physiological responses at the leaf scale. Stomatal closure is one of the most observed responses to high temperatures. This response is commonly considered as an adaptive strategy to reduce water loss and embolism in the vascular system caused by the high evaporative demand.

Use of a new, miniaturized, low-cost spectral sensor to estimate and map the vineyard water status from a mobile 

Optimizing the use of water and improving irrigation strategies has become increasingly important in most winegrowing countries due to the consequences of climate change, which are leading to more frequent droughts, heat waves, or alteration of precipitation patterns. Optimized irrigation scheduling can only be based on a reliable knowledge of the vineyard water status.

In this context, this work aims at the development of a novel methodology, using a contactless, miniaturized, low-cost NIR spectral tool to monitor (on-the-go) the vineyard water status variability. On-the-go spectral measurements were acquired in the vineyard using a NIR micro spectrometer, operating in the 900–1900 nm spectral range, from a ground vehicle moving at 3 km/h. Spectral measurements were collected on the northeast side of the canopy across four different dates (July 8th, 14th, 21st and August 12th) during 2021 season in a commercial vineyard (3 ha). Grapevines of Vitis vinifera L. Graciano planted on a VSP trellis were monitored at solar noon using stem water potential (Ψs) as reference indicators of plant water status. In total, 108 measurements of Ψs were taken (27 vines per date).

Calibration and prediction models were performed using Partial Least Squares (PLS) regression. The best prediction models for grapevine water status yielded a determination coefficient of cross-validation (r2cv) of 0.67 and a root mean square error of cross-validation (RMSEcv) of 0.131 MPa. This predictive model was employed to map the spatial variability of the vineyard water status and provided useful, practical information towards the implementation of appropriate irrigation strategies. The outcomes presented in this work show the great potential of this low-cost methodology to assess the vineyard stem water potential and its spatial variability in a commercial vineyard.

Chemical and sensory characterization of Xinomavro PDO red wine

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Relation between the environmental factors of the terroir system and flavan-3-ol composition of grape berry seeds and skin at pre-veraison stage and harvest Influence of dedicate viticultural management

Quantity and quality of flavonoïds in grape berries are important parts of their global quality. Several studies had shown that tannins are responsible for some major flavour properties of red wines such as colour, bitterness and astringency. Nevertheless, their synthesis and properties are still misunderstood. Some studies had suggested that the tannic pool was set before veraison. Thus, the comprehension of the relations between environment and setting of this tannic pool, up to the harvest, is not sufficient.