OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 Mitigating the effects of climate change on berry composition by canopy management

Mitigating the effects of climate change on berry composition by canopy management

Abstract

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality. Global climate change is modifying vine physiology and especially the composition of grape berries at harvest, by decoupling phenolic and aromatic maturities (depending on secondary metabolites) from technical maturity (depending on primary metabolites). These modifications can be limited through vineyard management. One of the rapid and efficient ways to mitigate the effects of climate change is to modify vine canopy, thus modifying the relationships between source and sink. 

To face this challenge, we used Vitis vinifera cv. Cabernet Sauvignon plants 1) to analyse the response of yield and biochemical composition in ripening berries, including sugars, organic acids, amino acids, phenolic compounds (anthocyanins, flavonols) and aroma molecular makers including methoxypyrazines associated with the green character (low ripenning), volatile thiols (and their precursors), as well as furanones and lactones linked with the cooked/dried fruit aromas (overipenning), with UHPLC, GC-MS and LC-MS analyses; 2) to link the changes in berry composition with wine quality by microvinification sensory analysis; 3) to study the response of berry transcriptome to canopy manipulation, by RNAseq or qPCR analyses. 

 The results showed that metabolites had different sensitivities to the modulation of leaf-to-fruit ratios, demonstrating that it is possible to determine an optimal leaf/fruit ratio to reduce sugar concentration in the berry without much impact on the typicality of Bordeaux wines

Acknowledgments

We thank the CIVB for financial support to the CANOGRAPE project N ° 44233 and France AgriMer for financial support to CANABA project N°414

DOI:

Publication date: June 9, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Sabine Guillaumie (1), Eloïse Brouard (1), Lina Wang (1), Ghislaine Hilbert (1), Cécile Thibon (2), Isabelle Merlin (1), Alexandre Pons (2,3), Christel Renaud (1), Claudine Trossat-Magnin (1), Nathalie Ollat (1), Serge Delrot (1), Philippe Darriet (2), Eric Gomès (a), Zhanwu Dai (1), Sabine Guillaumie (1)

(1) UMR EGFV, Bordeaux Sciences Agro, INRA, University of Bordeaux, ISVV, Villenave d’Ornon, France
(2) Unitéde recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Universitéde Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(3) SEGUIN MOREAU France, Cognac, France

Contact the author

Keywords

climate change, leaf/fruit ratio, berry composition, wine

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].

Exploring high throughput secondary trait phenomics to improve grapevine breeding

Modern grapevine breeding programs have overcome many challenges using genomic selection, which has allowed breeders to make targeted selections at earlier stages in the breeding process. However, the cost of genetic testing may present a burden for some programs, and markers often struggle to accurately predict quantitative traits. Recent advances in high throughput, high-dimensional data have provoked investigation into the use of high-dimensional phenomics as a low-cost addition to the grape breeder’s toolkit that may offer advantages in predicting quantitative traits. High-dimensional secondary trait (HDST) data has been employed in annual crops for prediction of agriculturally important traits such as yield.

Plastid genomics of Vitis vinifera L. for understanding the molecular basis of  grapevine (Vitis vinifera L.) domestication

The precise molecular mechanisms underlying the domestication of grapevine (Vitis vinifera L.) Are still not fully understood. In the recent years, next-generation sequencing (NGS) of plastid genomes has emerged as a powerful and increasingly effective tool for plant phylogenetics and evolution. To uncover the biological profile of the grapevine domestication process comprehensively, an investigation should encompass both the cultivated varieties (V. vinifera subsp. Vinifera) and their wild ancestors V. vinifera subsp. Sylvestris) across all potential sites of their distribution and domestication.

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design.

Influence of the number of CPPU applications on growth, mineral composition and Bunch Stem Necrosis incidence in table grape clusters

The forchlorfenuron (CPPU) application is recommended in table-grape after fruit-set to boost berry sizing, albeit growers also apply CPPU during pre-flowering with controversial advantages. We examined the effect of single (BBCH 15) and double (BBCH 15 and 57) CPPU applications (2.25 mg/L a.s.) in a commercial vineyard. At each time, 75-100 bunches belonging to 6-9 vines were sprayed, and compared with unsprayed (CTRL). Leaf stomatal conductance (gs), cluster stem diameter and length were measured. At harvest, 25 berries/repetition were sampled for chemical composition, BSN incidence was counted (N° necrotic laterals/10 cm of stem) in 40 bunches/repetition. To test the role of air VPD on mineral composition, at BBCH 77, 50 CTRL clusters were bagged to induce a low VPD.