WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Posters 9 Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Mechanistic insights into the bioavailability of oleocanthal and oleacein from olive oil in presence of wine active peptides and amino acids

Abstract

Oleocanthal (OC) and oleacein (OL) are highly bioactive secoiridoids found in olive oil at elevated concentrations, especially when it is produced from unripe olives (Olea europaea L.). Both compounds have been correlated with strong activities against serious diseases through recent clinical trials. The most important clinical trials have been performed in patients against chronic lymphocytic leukemia1, against mild cognitive impairment2 and against platelet aggregation of normal3 or diabetic patients. Carefully designed nutritional interventions in humans using olive oil with high OC/OL content or olive oil without OC/OL have provided strong evidence about the unique therapeutic role of those compounds. However, both compounds do not actually circulate in the body and cannot be found in any biological fluid. Recent studies have shown that OC and OL react spontaneously with plasma aminoacids like glycine to form new highly bioactive chemical entities like oleoglycine that circulate in the blood and can also reach the brain of experimental animals4. During our continuous effort to understand the mechanisms of action of OC/OL, we investigated the reactions of both compounds with aminoacids and peptides found in white wines5. During this study we screened the selectivity and the rate of this reaction, and we discovered new metabolites with unique structures and properties like oleocysteine (1a,b), oleoserine (2a,b) or oleoglutathione (3a,b). The synthesized metabolites were structurally elucidated using NMR and MS. OC/OL selectivity was assessed by competitive nucleophilic addition reactions with peptides and amino acids at pH=7 and 3.5, quantifying products and ratios by UHPLC-Q-ToF MS. The obtained results can shed light on the mechanism of action of OC/OL and more significantly explain their bioavailability.

1.        Rojas Gil AP, Kodonis I, Ioannidis A, Nomikos T, Dimopoulos I, Kosmidis G, Melliou E, Magiatis P. The Effect of Dietary Intervention With High-Oleocanthal and Oleacein Olive Oil in Patients With Early-Stage Chronic Lymphocytic Leukemia: A Pilot Randomized Trial. Front Oncol 2022; 5746.

2.        Agrawal K, Melliou E, Li X, Pedersen TL, Wang SC, Magiatis P, Newman JW, Holt RR. Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. J Funct Foods 2017;36: 84-93

3.        Tsolaki M, Lazarou E, Kozori M, Petridou N, Tabakis E, Lazarou I, Karakota M, Saoulidis I, Melliou E, Magiatis P. A Randomized Clinical Trial of Greek High Phenolic Early Harvest Extra Virgin Olive Oil in Mild Cognitive Impairment: The MICOIL Pilot Study. J Alzh Disease 2020; 78.

4.        Darakjian L, Rigakou A, Brannen A, Qusa MH, Tasiakou N, Diamantakos P, Reed MN, Panizzi P, Boersma MD, Melliou E, El Sayed KA, Magiatis P, Kaddoumi A. Spontaneous In Vitro and In Vivo Interaction of (−)-Oleocanthal with Glycine in Biological Fluids: Novel Pharmacokinetic Markers”. ACS Pharmacol Transl Sci 2021; 4: 179-192.

5.        Romanet, R., Bahut, F., Nikolantonaki, M., & Gougeon, R. D. (2020). Molecular Characterization of White Wines Antioxidant Metabolome by Ultra High Performance Liquid Chromatography High-Resolution Mass Spectrometry. Antioxidants (Basel), 9(2). https://doi.org/10.3390/antiox9020115.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Kalyva F, Diamantakos P, Melliou E, Nikolantonaki M, Magiatis P

Presenting author

Kalyva F

UMR PAM, IUVV, Université Bourgogne-Franche-Comté

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

«Observatoire Mourvèdre»: statistical modelling of quality for Cv. Mourvèdre

Vine cultivar Mourvèdre is present all around the Mediterranean area and is interesting for its tannins and the specificity of its aromas.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.

Fermentations management: tools for the preservation of the wine specificity

Development of the indigenous microflora is not insignificant on the wine quality. S. cerevisiae indigenous strains are low tolerant to ethanol.