GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Abstract

Context and purpose of the study: Water and heat stress impose new challenges to irrigation management in the Mediterranean areas. This reality has a major impact on the vineyard ecosystem, particularly on the scarce water resources of the Alentejo region (South Portugal). To mitigate this problem, irrigation management should focus on optimizing yield and fruit quality per volume of water applied. This work aims to discuss the use of predawn leaf water potential and soil water status relationships as a decision tool for irrigation management taking as basis data from a field trial where two deficit irrigation strategies were compared.

Material and methods: A deficit irrigation experiment was conducted from 2013-2015 at a commercial vineyard locatedat Reguengos de Monsaraz, Alentejo, Portugal (38o22’ N 7o33’ W) with the V. vinifera variety Aragonez (syn. Tempranillo). A sustained deficit irrigation (DI) strategy used by the farm consisting of a constant proportion of crop evapotranspiration (0.28) was applied along the irrigation period (DI1) and was compared with DI2, a similar strategy but with 48% lower water volumes than DI1, using a randomized complete block design with four replications of 15 plants. Predawn leaf water potential (ψPD) was used to define the beginning of each irrigation event.Soil water content until one meter depth was assessed and the fraction of transpirable soil water (FTSW) was calculated. Yield, berry composition and pruning weight were assessed. This paper reports the first year (2013) results.

Results: The DI strategies induced a decrease of ψPD along the season. In parallel, the progressive water withhold decreased FTSW (accessed after each irrigation event) along the season from 80 to 20%, while atmospheric water demand was increasing. The strong correlation between ψPD and FTSW observed may support the use of FTSW as a robust predictor of ψPD. The stressful conditions imposed by this irrigation strategy had no significant effect on yield, berry composition and vigor. The crop WUE (amount of fruit produced per unit of water applied) was higher for DI2 strategy and, at the same time, allowing water savings as compared to grower’s irrigation strategy.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ricardo EGIPTO1,2*, Joaquim Miguel COSTA2, José SILVESTRE1, Manuela CHAVES3, Carlos M. LOPES2

INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos, Portugal
LEAF, ISA, Universidade de Lisboa , Tapada da Ajuda Lisboa, Portugal
LEM-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal

Contact the author

Keywords

deficit irrigation, water stress, crop WUE, yield and berry quality

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

IMPACT ON CHITOSAN APPLICATION OF DIFFERENT MICROORGANISMS HAVING OENOLOGICAL INTEREST

Chitosan is an effective antimicrobial agent available in the wine industry, because it ensures the control of a of spoilage microorganisms, such as Brettanomyces of lactic acid bacteria.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Assessing macro-elements contents in vine leaves and grape berries of Vitis vinifera using near-infrared spectroscopy coupled with chemometrics

The cultivated vine (Vitis vinifera) is the main species cultivated in the world to make wine. In 2017, the world wine market represents 29 billion euros in exports, and France contributes 8.2 billion (28%) to this trade, making it a traditional market of strategic importance. Viticulture is therefore a key sector of the French agricultural economy. It is in this context that the nutritional diagnosis of the vine is of real strategic interest to winegrowers. Indeed, the fertilization of the vine is a tool for the winegrower that allows him to influence and regulate the quality of the wine.

Influence of different strains of lab on quality of catarratto wine produced in sicily

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2].