GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Abstract

Context and purpose of the study: Water and heat stress impose new challenges to irrigation management in the Mediterranean areas. This reality has a major impact on the vineyard ecosystem, particularly on the scarce water resources of the Alentejo region (South Portugal). To mitigate this problem, irrigation management should focus on optimizing yield and fruit quality per volume of water applied. This work aims to discuss the use of predawn leaf water potential and soil water status relationships as a decision tool for irrigation management taking as basis data from a field trial where two deficit irrigation strategies were compared.

Material and methods: A deficit irrigation experiment was conducted from 2013-2015 at a commercial vineyard locatedat Reguengos de Monsaraz, Alentejo, Portugal (38o22’ N 7o33’ W) with the V. vinifera variety Aragonez (syn. Tempranillo). A sustained deficit irrigation (DI) strategy used by the farm consisting of a constant proportion of crop evapotranspiration (0.28) was applied along the irrigation period (DI1) and was compared with DI2, a similar strategy but with 48% lower water volumes than DI1, using a randomized complete block design with four replications of 15 plants. Predawn leaf water potential (ψPD) was used to define the beginning of each irrigation event.Soil water content until one meter depth was assessed and the fraction of transpirable soil water (FTSW) was calculated. Yield, berry composition and pruning weight were assessed. This paper reports the first year (2013) results.

Results: The DI strategies induced a decrease of ψPD along the season. In parallel, the progressive water withhold decreased FTSW (accessed after each irrigation event) along the season from 80 to 20%, while atmospheric water demand was increasing. The strong correlation between ψPD and FTSW observed may support the use of FTSW as a robust predictor of ψPD. The stressful conditions imposed by this irrigation strategy had no significant effect on yield, berry composition and vigor. The crop WUE (amount of fruit produced per unit of water applied) was higher for DI2 strategy and, at the same time, allowing water savings as compared to grower’s irrigation strategy.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ricardo EGIPTO1,2*, Joaquim Miguel COSTA2, José SILVESTRE1, Manuela CHAVES3, Carlos M. LOPES2

INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos, Portugal
LEAF, ISA, Universidade de Lisboa , Tapada da Ajuda Lisboa, Portugal
LEM-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal

Contact the author

Keywords

deficit irrigation, water stress, crop WUE, yield and berry quality

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.

Genomic comparison on O. oeni: can l. hilgardii be a novel starter culture in malolactic fermentation?

Malolactic fermentation (MLF) the microbial bioconversion of L-malic acid into L-lactic acid, is a pivotal metabolic process that holds fundamental significance for the quality and organoleptic characteristics of some wines. Oenococcus oeni is considered to be the main player in this conversion, and it is globally used as a starter culture for mlf thanks to his capacity to tolerate the harsh wine environment.

Биотехнология в системе оздоровления и размножения комплексно-устойчивых сортов винограда на Юге России

The production of certified grape planting material is one of the most important problems in the Russian federation. According to the scheme for the production of healthy grape planting material, before being introduced into in vitro culture, the source plants of each variety (Moldova, Augustin, Bart) were individually assessed for typical varietal characteristics and the presence/absence of symptoms of infection by pests.