GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Can soil water content be used as a predictor of predawn leaf water potential for deficit irrigation scheduling? A case study at Alentejo wine region

Abstract

Context and purpose of the study: Water and heat stress impose new challenges to irrigation management in the Mediterranean areas. This reality has a major impact on the vineyard ecosystem, particularly on the scarce water resources of the Alentejo region (South Portugal). To mitigate this problem, irrigation management should focus on optimizing yield and fruit quality per volume of water applied. This work aims to discuss the use of predawn leaf water potential and soil water status relationships as a decision tool for irrigation management taking as basis data from a field trial where two deficit irrigation strategies were compared.

Material and methods: A deficit irrigation experiment was conducted from 2013-2015 at a commercial vineyard locatedat Reguengos de Monsaraz, Alentejo, Portugal (38o22’ N 7o33’ W) with the V. vinifera variety Aragonez (syn. Tempranillo). A sustained deficit irrigation (DI) strategy used by the farm consisting of a constant proportion of crop evapotranspiration (0.28) was applied along the irrigation period (DI1) and was compared with DI2, a similar strategy but with 48% lower water volumes than DI1, using a randomized complete block design with four replications of 15 plants. Predawn leaf water potential (ψPD) was used to define the beginning of each irrigation event.Soil water content until one meter depth was assessed and the fraction of transpirable soil water (FTSW) was calculated. Yield, berry composition and pruning weight were assessed. This paper reports the first year (2013) results.

Results: The DI strategies induced a decrease of ψPD along the season. In parallel, the progressive water withhold decreased FTSW (accessed after each irrigation event) along the season from 80 to 20%, while atmospheric water demand was increasing. The strong correlation between ψPD and FTSW observed may support the use of FTSW as a robust predictor of ψPD. The stressful conditions imposed by this irrigation strategy had no significant effect on yield, berry composition and vigor. The crop WUE (amount of fruit produced per unit of water applied) was higher for DI2 strategy and, at the same time, allowing water savings as compared to grower’s irrigation strategy.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ricardo EGIPTO1,2*, Joaquim Miguel COSTA2, José SILVESTRE1, Manuela CHAVES3, Carlos M. LOPES2

INIAV, I.P., Pólo de Dois Portos, Quinta da Almoínha, 2565-191 Dois Portos, Portugal
LEAF, ISA, Universidade de Lisboa , Tapada da Ajuda Lisboa, Portugal
LEM-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal

Contact the author

Keywords

deficit irrigation, water stress, crop WUE, yield and berry quality

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

StartupLab and HackaVitis: open innovation and technology transfer in the wine sector

The study analyzes a set of open innovation actions promoted by the innovation environments of the Instituto Federal do Rio Grande do Sul (IFRS), in cooperation with entities, companies in the sector and the Department of Innovation, Science and Technology of Rio Grande do Sul.

Viticultural landscape: history of a challenging coexistence between grapevines and humans 

Vitis vinifera is the most grown grapevine species, which originated about 6 million years ago in the trans-caucasian area as the ancestral (wild) type v. Vinifera spp. Sylvestris. On the other hand, the human being (homo sapiens) is much younger since he originated about 300.000 years ago in north africa.

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.