Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

Adaptation of Lactobacilli towards low ph and SO2 to develop MLF in base musts for sparkling wines

Abstract

In some white wines, malolactic fermentation (MLF) is very interesting, and for low pH wines this process is particularly difficult. Although MLF is generally not recommended for sparkling white wine, some winemakers prefer to promote MLF to contribute to organoleptic complexity. Oenococcus oeni is generally the bacterium of choice for MLF. However, people’s interest in other species (such as Lactobacillus) is increasing. However, one disadvantage of lactobacilli is that they are more sensitive to low pH and SO2, and some producers of starters inoculate high doses of non-growing bacteria in grape musts. This work aims to grow some selected strains of Lactobacillus in grape juice and perform early MLF. With this strategy, beyond performing the MLF homolactic bacteria can contribute clearly to maintain or even decrease the final pH in wines by producing lactic acid from sugars; they also produce more complex wines, and prevent the spoilage of an undesired late MLF in bottles. 

To perform this selection, twelve Lactobacillus strains were successively inoculated after adapting to the lowering of pH and the increasing concentration of SO2. The cell concentration of the inoculum was in the order of x 106 CFU/mL to allow growth and synthesis of lactic acid. All Lactobacillus strains gradually adapted to low pH and SO2 and could grow at pH 3.2 and the highest SO2 concentration, thereby maintaining or even increasing their final biomass. After 7 days, all strains always underwent MLF. Malic acid consumption rate and lactic acid production depend on the strain. The final pH of wines was maintained or even decreased, even when complete MLF was achieved. This strategy helps in biological acidification of wines against the loss of acidity derived from climate change.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

FERRER Sergi, POLO Lucía, ANDRÉS Lorena, PARDO Isabel

Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Wine quality is influenced by grape maturity, typically monitored by measuring sugar content and acidity.

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months

HRATA : A new sensory methodology using advantage of wine aromatic wheels

Wine is an intrinsically complex aromatic product. To formalize this aromatic diversity and the hierarchical structure of the aromas, it is common to present them in the form of a wheel of aromas. These are used for learning and communication purposes but never for the acquisition of sensory characteristics.

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

Impact of SO2 addition before alcoholic fermentation on the oxidative stability of Chardonnay white wines

Sulfites (SO2) addition during winemaking is a widespread practice worldwide. This addition is realized at different steps of the winemaking due to the antimicrobial and antioxidant capacity of SO2. In a context of understanding white wines oxidative stability, knowledge about the impact of SO2 on the wine molecular diversity, especially compounds involved in the antioxidant capacity of wine, appears to be very important. In recent years, some studies have shown that SO2 can react with a large number of wine compounds resulting in the formation of numerous adducts. The diversity of compounds involved is important including in particular pyruvic acid, 2-keto-glutaric acid, glyceraldehyde, sugar, phenolics compounds but also amino acids or peptides. Moreover Roullier-Gall et al. have shown using FT-ICR-MS analysis that the molecular composition of wines remains impacted by addition of SO2 to the must (0, 4 and 8 g/hL SO2), several years after winemaking. Indeed, wines made from protected must (8g/hL SO2) contain a larger diversity of CHOS and CHONS compounds than wines made from unprotected must (0 g/hL SO2). The study of the impact of glutathione addition on the sensory oxidative stability has further shown that CHOS and CHONS compounds (amino acids, aromatic compounds and peptides) are markers of the antioxidant metabolome of white wines. This suggests that CHOS and CHONS compounds arise from SO2 adducts formation but also from a protecting effect of SO2 on the antioxidant metabolome of white wines.