GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Abstract

Context and purpose of the study – Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

Material and methods – Clusters of grapevines of Vitis vinifera L. cv. Tempranillo were collected in a commercial vineyard located in Tudelilla, La Rioja, Spain (Lat. 42°18′ 18.26″, Long. -2°7′ 14.15″, Alt. 515 m) on five different dates from veraison to harvest in 2016 season. Contactless (at 25 cm from berries) spectral measurements from intact grape berries were acquired using a NIR spectrometer working in the 1100 – 2100 nm spectral range under laboratory conditions.A total of 19 individual amino acids in 120 grape clusters were quantified by HPLC, which was used as the reference method for the validation of the spectral tool. Principal component analysis (PCA) and Modified partial least squares (MPLS) regressions were used to explore the data structure and for the prediction of the amino acids profile in grape berries, by building calibration and validation models.

Results – A wide variability of all studied parameters was found during the ripening process with amino acid content ranging from 0.07 mg N/l (Glycine) to 534 mg N/l (Arginine). On average, Arginine was the most abundant amino acid (46.64 %), followed by Glutamine (14.70 %) and Proline (6.76 %). The best calibration and cross-validation models were built for Arginine, Cysteine and Proline with correlation coefficients values of 0.80, 0.77 and 0.75, while the standard errors of cross validation (SECV) were 43.04 mg N/l, 0.40 mg N/l and 5.87 mg N/l, respectively. In terms of the Free Amino Nitrogen content (FAN) the values of 0.71 and 104.85 mg N/l were gathered for the correlation coefficient of cross validation and SECV, respectively. The potential of NIR technology to fingerprinting the amino acid content in intact berries has been investigated. This technology could be used to select or classify grape berries during ripening in the vineyard, or at harvest time at the reception of the grapes in the production line (winery). This could be very useful to adapt the enological fate or grape berries to different wine qualities or styles, as well as to adopt different viticultural (thinning, selective harvesting) or enological decisions. Nevertheless, further examination of the influence of more varieties, seasons, and origins should be conducted with the aim of developing more robust, global, and predictive models.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Juan FERNÁNDEZ-NOVALES1, Teresa GARDE-CERDÁN1, Javier TARDÁGUILA1, Sandra MARÍN-SAN ROMÁN1, Eva P. PÉREZ-ÁLVAREZ1, Eugenio MOREDA1, Maria-Paz DIAGO1*

Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. de Burgos Km 6. 26007 Logroño, La Rioja, Spain

Contact the author

Keywords

grape ripening, non-destructive evaluation of berries, nitrogen composition, spectral techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Barrels ad-hoc: Spanish oak wood classification by NIRs 

The wooden barrel is a key factor in enology, since wine chemical composition and sensory properties changes significantly in contact with the barrel[1]. Today’s highly competitive market constantly demands new differentiated products and wineries search innovations continuously.
Wood selection is crucial: barrels stability to keep constant their contribution and the result on products, and additional and differentiated wood contributions to impact their new products. Oak wood selection has traditionally been carried out using parameters such as specie, location and grain, however, it goes one step further nowadays. Large cooperage work with non-destructive techniques that allow classifying oak wood quickly and easily according to their organoleptic contribution[2].

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

Tracking of sulfonated flavanol formation in a model wine during storage

The aim of this work was to determine the reaction products of bisulfite with grape seed flavanols and changes therein over different storage conditions in a model wine

Influence of temperature and light on vegetative growth and bud fruitfulness of grapevine cv. Semillon

Aim: To investigate the effects of different levels of temperature and light intensity on grapevine vegetative growth and bud fruitfulness, which includes the number and size of inflorescence primordia in primary buds.