GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Abstract

Context and purpose of the study – Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

Material and methods – Clusters of grapevines of Vitis vinifera L. cv. Tempranillo were collected in a commercial vineyard located in Tudelilla, La Rioja, Spain (Lat. 42°18′ 18.26″, Long. -2°7′ 14.15″, Alt. 515 m) on five different dates from veraison to harvest in 2016 season. Contactless (at 25 cm from berries) spectral measurements from intact grape berries were acquired using a NIR spectrometer working in the 1100 – 2100 nm spectral range under laboratory conditions.A total of 19 individual amino acids in 120 grape clusters were quantified by HPLC, which was used as the reference method for the validation of the spectral tool. Principal component analysis (PCA) and Modified partial least squares (MPLS) regressions were used to explore the data structure and for the prediction of the amino acids profile in grape berries, by building calibration and validation models.

Results – A wide variability of all studied parameters was found during the ripening process with amino acid content ranging from 0.07 mg N/l (Glycine) to 534 mg N/l (Arginine). On average, Arginine was the most abundant amino acid (46.64 %), followed by Glutamine (14.70 %) and Proline (6.76 %). The best calibration and cross-validation models were built for Arginine, Cysteine and Proline with correlation coefficients values of 0.80, 0.77 and 0.75, while the standard errors of cross validation (SECV) were 43.04 mg N/l, 0.40 mg N/l and 5.87 mg N/l, respectively. In terms of the Free Amino Nitrogen content (FAN) the values of 0.71 and 104.85 mg N/l were gathered for the correlation coefficient of cross validation and SECV, respectively. The potential of NIR technology to fingerprinting the amino acid content in intact berries has been investigated. This technology could be used to select or classify grape berries during ripening in the vineyard, or at harvest time at the reception of the grapes in the production line (winery). This could be very useful to adapt the enological fate or grape berries to different wine qualities or styles, as well as to adopt different viticultural (thinning, selective harvesting) or enological decisions. Nevertheless, further examination of the influence of more varieties, seasons, and origins should be conducted with the aim of developing more robust, global, and predictive models.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Juan FERNÁNDEZ-NOVALES1, Teresa GARDE-CERDÁN1, Javier TARDÁGUILA1, Sandra MARÍN-SAN ROMÁN1, Eva P. PÉREZ-ÁLVAREZ1, Eugenio MOREDA1, Maria-Paz DIAGO1*

Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. de Burgos Km 6. 26007 Logroño, La Rioja, Spain

Contact the author

Keywords

grape ripening, non-destructive evaluation of berries, nitrogen composition, spectral techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Q-NMR measurements: quantitative analysis of wine composition applied to Bordeaux red wines authenticity control

Traceability of wine is today a consumer demand and a scientific challenge. The methods of analysis must be able to control three fundamental parameters: the geographical origin, the grape varieties, and the vintage.

Transition metals and light-dependent reactions: application of a response surface methodology approach

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST).

Bio-based fertilisers from fruit and vegetable residues for improving soil fertility and vine status in degraded vineyards

The H2020 RUSTICA project aims to propose, demonstrate, and implement technical solutions to convert organic residues from fruit and vegetables into high-quality novel bio-based fertilisers (BBF).

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.