IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Transition metals and light-dependent reactions: application of a response surface methodology approach

Transition metals and light-dependent reactions: application of a response surface methodology approach

Abstract

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST). The fault is associated to the formation of volatile sulfur compounds (VSCs), namely methanethiol (MeSH) and dimethyl disulfide (DMDS), leading to cooked cabbage, onion and garlic odours-like [1]. Aside these pathways, other oxidative reactions can occur involving iron and copper that can generate quinones. Moreover, the ability of copper in binding the compounds containing a free thiol group is well known. 
This study aimed to evaluate for the first time the combined effect of iron, copper, and oxygen on LST formation in model wine.
A Surface Response Methodology approach was used considering 3 variables, as iron, copper and oxygen. Based on the experimental design, 15 runs (light-exposed and kept in the dark) were performed in model wine. Furthermore, to better understand the influence of phenolics, the same experimental design was applied in the presence of catechin and caffeic acid, used as model phenols. RF, Met, VSCs, and sensory were determined.
No RF was found in any light-exposed sample analysed. The major decrease of Met was revealed in model solution in which MeSH and DMDS were the highest. The presence of phenolics limited the degradation of Met and, consequently, the formation of MeSH and DMDS. In particular, in most of the runs where caffeic acid was added, VSCs were lower than in the runs in model wine and in the presence of catechin. The presence of iron (10 mg/L and 5 mg/L with oxygen 3 mg/L) led to a higher content of mercaptans in model wine as well as in the presence of catechin and caffeic acid. Our findings suggest that besides RF and Met, the susceptibility of a wine in developing LST appeared to be related to the presence of transition metals as well as to the different phenols that would ordinarily be present in wine. 
This study represents a further step for the deeper comprehension of the photo-induced reactions allowing to pursue the LST prevention in white wine.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Fracassetti Daniela1, Jeffery David2, Ballabio Davide3 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2Department of Wine Science and Waite Research Institute, The University of Adelaide
3Department of Earth and Environmental Sciences, University of Milano-Bicocca

Contact the author

Keywords

riboflavin, methionine, catechin, caffeic acid, volatile sulfur compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of changes in pruning practices on vine growth and yield

A gradual decline in vineyards has been observed over the past twenty years worldwide. This might be explained by the climate change, practices change or the increase of dieback diseases. To increase the longevity of vines, we studied the impact of different pruning strategies in four adult and four young vineyards located in France and Spain. In France, vineyards were planted with Cabernet franc on 3309C while Spanish trials were planted with Tempranillo grafted on 110R. Vegetative expression, yield, quality of berries and wood vessels conductivity were measured. The distribution of vegetative expression, yield and berry composition between primary and secondary vegetation were quantified. Finally, tomography was used to evaluate the implication of the treatments on sap flows.
First results show that i) the respectful pruning leads to an increase of 30 to 50% more secondary shoots than the aggressive pruning in France and between 15 and 20% in Spain, ii) there is no major effect on the yield over the first two years following the implementation of the new pruning practices, although the proportion of clusters from suckers is higher on the respectful pruning method. On young vines, the development of the trunk according to a respectful pruning leads to a loss of harvest 2 years after planting. This is due to the removal, on the future trunk, of the green suckers which carrying bunches. This operation carried out in spring rather than during winter pruning, would promote a better leaf / fruit balance when the plant comes into production, and could lead to better hydraulic conduction in the vessels of the trunk. Maintaining these trials for several years will provide more robust data to assess the impact of these practices on the vines over the long term.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.

Predictive Breeding for Wine Quality: From Sensory Traits to Grapevine Genome

New pathogen resistant varieties allow an efficient and greatly reduced use of fungicides. These new varieties promise, therefore, an enormous potential to reach the European Green Deal aim of a 50% reduction of pesticides in EU agriculture by 2030.

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition.