GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Investigating three proximal remote sensing techniques for vineyard yield monitoring

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Abstract

Context and purpose of the study – Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest. Traditional destructive measurements for yield determination were used as a reference. Each technique was tested in controlled conditions (laboratory) and field conditions (vineyard) at bunch and vine levels.

Material and methods – This study was carried out in a drip-irrigated vineyard cv. Shiraz at the Welgevallen farm (Stellenbosch University, South Africa). The Shiraz block was planted with a North-South orientation in the year 2000 (2.7m x 1.5m spacing). The vines are spur pruned on a seven-wire vertical shoot positioned system (VSP). Three proximal remote sensing techniques: a) RGB imagery (Conventional Red-Green-Blue images), b) infrared depth sensing (Kinect sensor), and c) light detection and ranging (LiDAR) were analysed for yield monitoring. The estimated yield was accomplished using bunch volume estimation in three experiments at harvest. Experiment 1 uses the Kinect and RGB imagery to estimate bunch volume based on a sample of 94 individual bunches under laboratory conditions. Experiment 2 uses Kinect and RGB imagery to estimate the volume of 21 individual bunches in-field. Experiment 3 uses Kinect, RBG imagery, and LiDAR, in-field, to estimate total yield per vine of 31 individual vines. Experiment 2 and Experiment 3 were undertaken using two canopy treatments: i) full canopy (FC), and ii) leaf removal (LR – 100% leaf removal in the bunch zone thereby exposing the bunches).

Results – The results obtained in this study show a strong correlation between the volume calculated by RGB images (2D modelling) and Kinect (3D modelling) versus the control volume of the individual bunches (Experiment 1). Experiments 2 and 3 show promising results for the three proximal remote sensing techniques studied, especially in the case of fully exposed bunches (LR treatment). Therefore, it’s possible to state the feasibility of these techniques as alternative fast and non-destructive methods for yield monitoring.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Chris HACKING1, Nitesh POONA1, Nicola MANZAN2, Carlos POBLETE-ECHEVERRÍA3*

1 Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, Udine, Italy
3 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

grapevine, yield monitoring, non-destructive methods, light detection and ranging (LiDAR), infrared depth sensing, conventional Red Green Blue images

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Temperature variations in the Walla Walla valley American Viticultural Area

Variations in average growing season and ripening season temperatures within the Walla Walla Valley American Viticultural Area are related to elevation and regional and local topography.

New genomic techniques for sustainable management of water stress and pathogen control

Context and purpose of the study. Climate changes pose the need to develop new grapevine varieties and rootstocks that are more tolerant to stress and diseases.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Volatile compounds of base wines for the production of Lessini Durello sparkling wine

AIM Durello is a sparkling wine produced in the Lessini mountains near Verona. The wine is made from Durella grapes, a native white grape variety with a particularly high acidity. In spite of the small production area (375 ha for only 35 producers), there is a growing interest in this product. However, little is known about the aromatic profiles of these wines. The aim of this work was to characterize the aroma profile of Durella base wines suitable for the production of Lessini Durello sparkling wine. METHODS 14 base wines from Durella grapesfrom different producers were used for this study. Solid Phase Microextraction (SPME) and Solid Phase Extraction (SPE) sampling techniques coupled to GC-MS analysis allowed to identify and quantify a total of 62 volatile compounds. RESULTS Durello base wines showed relatively high levels of vitispirane, ß-damascenone, ß-citronellol and esters.

Photo-oxidative stress and light-struck defect in Corvina rosé wines: influence of yeast nutritional strategies

Light exposure is one of the major factors affecting the sensory quality of rosé wines and resulting in the light-struck fault.