GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Investigating three proximal remote sensing techniques for vineyard yield monitoring

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Abstract

Context and purpose of the study – Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest. Traditional destructive measurements for yield determination were used as a reference. Each technique was tested in controlled conditions (laboratory) and field conditions (vineyard) at bunch and vine levels.

Material and methods – This study was carried out in a drip-irrigated vineyard cv. Shiraz at the Welgevallen farm (Stellenbosch University, South Africa). The Shiraz block was planted with a North-South orientation in the year 2000 (2.7m x 1.5m spacing). The vines are spur pruned on a seven-wire vertical shoot positioned system (VSP). Three proximal remote sensing techniques: a) RGB imagery (Conventional Red-Green-Blue images), b) infrared depth sensing (Kinect sensor), and c) light detection and ranging (LiDAR) were analysed for yield monitoring. The estimated yield was accomplished using bunch volume estimation in three experiments at harvest. Experiment 1 uses the Kinect and RGB imagery to estimate bunch volume based on a sample of 94 individual bunches under laboratory conditions. Experiment 2 uses Kinect and RGB imagery to estimate the volume of 21 individual bunches in-field. Experiment 3 uses Kinect, RBG imagery, and LiDAR, in-field, to estimate total yield per vine of 31 individual vines. Experiment 2 and Experiment 3 were undertaken using two canopy treatments: i) full canopy (FC), and ii) leaf removal (LR – 100% leaf removal in the bunch zone thereby exposing the bunches).

Results – The results obtained in this study show a strong correlation between the volume calculated by RGB images (2D modelling) and Kinect (3D modelling) versus the control volume of the individual bunches (Experiment 1). Experiments 2 and 3 show promising results for the three proximal remote sensing techniques studied, especially in the case of fully exposed bunches (LR treatment). Therefore, it’s possible to state the feasibility of these techniques as alternative fast and non-destructive methods for yield monitoring.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Chris HACKING1, Nitesh POONA1, Nicola MANZAN2, Carlos POBLETE-ECHEVERRÍA3*

1 Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, Udine, Italy
3 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

grapevine, yield monitoring, non-destructive methods, light detection and ranging (LiDAR), infrared depth sensing, conventional Red Green Blue images

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

What practices in the vineyard lead to the production of wines that consistently win medals?

High quality wines start in the vineyard however little is known about the role vineyard management practices play in this quality outcome. Gold medals and well-known regionality increase consumer preference for purchasing a wine. An increase in the former will certainly also drive an increase in the latter and therefore practices in production that consistently lead to gold medal winning wines will improve both the marketability of the region and its products. It is argued that vinification is the main driver of wine quality and in fact, the presence of some oak compounds is a well-known consumer and expert mark of quality. However, only select wines are vinified in oak and therefore the original grape quality at the winery door must in fact drive all further downstream vinification decisions.

VitExpress, an open interactive transcriptomic platform for grapevine

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.

La caracterización de los moscateles

Ya en 1964 GIOVANNI DALMASSO et alii describiendo el Moscato bianco (12) ponían de manifiesto la dificultad realmente ardua en descubrir “si no todas, por lo menos las más importantes variedades que llevan el nombre de Moscateles