GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Investigating three proximal remote sensing techniques for vineyard yield monitoring

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Abstract

Context and purpose of the study – Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest. Traditional destructive measurements for yield determination were used as a reference. Each technique was tested in controlled conditions (laboratory) and field conditions (vineyard) at bunch and vine levels.

Material and methods – This study was carried out in a drip-irrigated vineyard cv. Shiraz at the Welgevallen farm (Stellenbosch University, South Africa). The Shiraz block was planted with a North-South orientation in the year 2000 (2.7m x 1.5m spacing). The vines are spur pruned on a seven-wire vertical shoot positioned system (VSP). Three proximal remote sensing techniques: a) RGB imagery (Conventional Red-Green-Blue images), b) infrared depth sensing (Kinect sensor), and c) light detection and ranging (LiDAR) were analysed for yield monitoring. The estimated yield was accomplished using bunch volume estimation in three experiments at harvest. Experiment 1 uses the Kinect and RGB imagery to estimate bunch volume based on a sample of 94 individual bunches under laboratory conditions. Experiment 2 uses Kinect and RGB imagery to estimate the volume of 21 individual bunches in-field. Experiment 3 uses Kinect, RBG imagery, and LiDAR, in-field, to estimate total yield per vine of 31 individual vines. Experiment 2 and Experiment 3 were undertaken using two canopy treatments: i) full canopy (FC), and ii) leaf removal (LR – 100% leaf removal in the bunch zone thereby exposing the bunches).

Results – The results obtained in this study show a strong correlation between the volume calculated by RGB images (2D modelling) and Kinect (3D modelling) versus the control volume of the individual bunches (Experiment 1). Experiments 2 and 3 show promising results for the three proximal remote sensing techniques studied, especially in the case of fully exposed bunches (LR treatment). Therefore, it’s possible to state the feasibility of these techniques as alternative fast and non-destructive methods for yield monitoring.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Chris HACKING1, Nitesh POONA1, Nicola MANZAN2, Carlos POBLETE-ECHEVERRÍA3*

1 Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, Udine, Italy
3 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

grapevine, yield monitoring, non-destructive methods, light detection and ranging (LiDAR), infrared depth sensing, conventional Red Green Blue images

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mapping natural terroir units using a multivariate approach and legacy data

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000).

Macrowine 2021: available on IVES Conference Series

We were a partner of the 2021 Macrowine international congress. This event was held virtually last June. On IVES Conference Series portal, more than 280 abstracts written by wine scientists are available. They are available in Open Access and are divided into 6...

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Terroir aspects in development of quality of Egri bikavér

Egri Bikavér (Bull’s Blood) is one of the most remarkable Hungarian red wines on inland and foreign markets as well. From the end of the 70’s the quality of Egri Bikavér was decreasing continually due to mass production. The concept of production of quality wines became general in the mid 90’s again and it resulted in a new Origin Control System, for the first time that of Egri Bikavér in Hungary.

DNA and type of grain: which factor does better explain sensory differences of sessile and pedunculate oaks?

Sessile oak and pedunculate oak have shown several differences of interest for enological purposes. Tannic and aromatic composition among sessile oak or pedonculate oak has been well studied. Sessile oak is generally more aromatic than pedunculated, while the later is more tannic. This scientific point of view is rarely applied to classify oak in cooperages. Most coopers use the type of grain to distinguish wide and thin grain.