GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Investigating three proximal remote sensing techniques for vineyard yield monitoring

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Abstract

Context and purpose of the study – Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest. Traditional destructive measurements for yield determination were used as a reference. Each technique was tested in controlled conditions (laboratory) and field conditions (vineyard) at bunch and vine levels.

Material and methods – This study was carried out in a drip-irrigated vineyard cv. Shiraz at the Welgevallen farm (Stellenbosch University, South Africa). The Shiraz block was planted with a North-South orientation in the year 2000 (2.7m x 1.5m spacing). The vines are spur pruned on a seven-wire vertical shoot positioned system (VSP). Three proximal remote sensing techniques: a) RGB imagery (Conventional Red-Green-Blue images), b) infrared depth sensing (Kinect sensor), and c) light detection and ranging (LiDAR) were analysed for yield monitoring. The estimated yield was accomplished using bunch volume estimation in three experiments at harvest. Experiment 1 uses the Kinect and RGB imagery to estimate bunch volume based on a sample of 94 individual bunches under laboratory conditions. Experiment 2 uses Kinect and RGB imagery to estimate the volume of 21 individual bunches in-field. Experiment 3 uses Kinect, RBG imagery, and LiDAR, in-field, to estimate total yield per vine of 31 individual vines. Experiment 2 and Experiment 3 were undertaken using two canopy treatments: i) full canopy (FC), and ii) leaf removal (LR – 100% leaf removal in the bunch zone thereby exposing the bunches).

Results – The results obtained in this study show a strong correlation between the volume calculated by RGB images (2D modelling) and Kinect (3D modelling) versus the control volume of the individual bunches (Experiment 1). Experiments 2 and 3 show promising results for the three proximal remote sensing techniques studied, especially in the case of fully exposed bunches (LR treatment). Therefore, it’s possible to state the feasibility of these techniques as alternative fast and non-destructive methods for yield monitoring.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Chris HACKING1, Nitesh POONA1, Nicola MANZAN2, Carlos POBLETE-ECHEVERRÍA3*

1 Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, Udine, Italy
3 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

grapevine, yield monitoring, non-destructive methods, light detection and ranging (LiDAR), infrared depth sensing, conventional Red Green Blue images

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Within vineyard temperature structure and variability in the umpqua valley of Oregon

Climate influences viticulture and wine production at various scales with the majority of attention given to regional characteristics that define the general varieties that can be grown and the wine styles that can be produced.

Wines empirical perception and growers management practices in the Anjou Villages Brissac vineyard (France)

The concept of viticultural terroir includes soil, sub-soil, and climatic factors but also many management viticultural and oenological practices which are chosen according to know-how of the winegrowers.

Evaluation of the effect of regulated deficit irrigation on Vitis vinifera Cabernet-Sauvignon physiological traits and final fruit composition

Climate change establishes challenges, as well as opportunities for many sectors, and markedly the wine sector.

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.