GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Investigating three proximal remote sensing techniques for vineyard yield monitoring

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Abstract

Context and purpose of the study – Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest. Traditional destructive measurements for yield determination were used as a reference. Each technique was tested in controlled conditions (laboratory) and field conditions (vineyard) at bunch and vine levels.

Material and methods – This study was carried out in a drip-irrigated vineyard cv. Shiraz at the Welgevallen farm (Stellenbosch University, South Africa). The Shiraz block was planted with a North-South orientation in the year 2000 (2.7m x 1.5m spacing). The vines are spur pruned on a seven-wire vertical shoot positioned system (VSP). Three proximal remote sensing techniques: a) RGB imagery (Conventional Red-Green-Blue images), b) infrared depth sensing (Kinect sensor), and c) light detection and ranging (LiDAR) were analysed for yield monitoring. The estimated yield was accomplished using bunch volume estimation in three experiments at harvest. Experiment 1 uses the Kinect and RGB imagery to estimate bunch volume based on a sample of 94 individual bunches under laboratory conditions. Experiment 2 uses Kinect and RGB imagery to estimate the volume of 21 individual bunches in-field. Experiment 3 uses Kinect, RBG imagery, and LiDAR, in-field, to estimate total yield per vine of 31 individual vines. Experiment 2 and Experiment 3 were undertaken using two canopy treatments: i) full canopy (FC), and ii) leaf removal (LR – 100% leaf removal in the bunch zone thereby exposing the bunches).

Results – The results obtained in this study show a strong correlation between the volume calculated by RGB images (2D modelling) and Kinect (3D modelling) versus the control volume of the individual bunches (Experiment 1). Experiments 2 and 3 show promising results for the three proximal remote sensing techniques studied, especially in the case of fully exposed bunches (LR treatment). Therefore, it’s possible to state the feasibility of these techniques as alternative fast and non-destructive methods for yield monitoring.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Chris HACKING1, Nitesh POONA1, Nicola MANZAN2, Carlos POBLETE-ECHEVERRÍA3*

1 Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
2 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, University of Udine, Via delle Scienze 208, Udine, Italy
3 Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

grapevine, yield monitoring, non-destructive methods, light detection and ranging (LiDAR), infrared depth sensing, conventional Red Green Blue images

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

New food trend ahead? Highlighting the nutritional benefits of grapevine leaves

The wine industry produces an enormous amount of waste every year. A wider inclusion of disregarded by-products in the human diet or its use as a source of bioactive compounds is a good strategy for reducing waste. It will not only introduce an added value to a waste product but also come upon the European Union and United Nations’ demands towards more sustainable agricultural approaches and circular economy.

Climats: a model of terroir-based winegrowing recognized by UNESCO

In Burgundy, a climat has nothing to do with the weather but accurately designates a named vine plot, often centuries-old, which produces a singular wine. This wine is the combination of history, the natural environment (relief, type of soil, exposure to the sun), a grape variety and know-how going back thousands of years. The grapes of each climat are harvested separately and the wine is made from a single grape variety and has a unique name featured on the bottle. Romanée conti, clos de vougeot, montrachet, musigny, corton…

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.