Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Defoliation timing impacts berry secondary metabolites and sunburn damage

Defoliation timing impacts berry secondary metabolites and sunburn damage

Abstract

Sunburn is a physiological disorder that leads to yield and quality losses in a range of fruits such as grapes and apples. It affects the visual appearance and the composition of the fruit, leading to irreversible changes and ultimately, cell death in extreme situations. Sunburn is caused by a combination of excessive radiation and temperature that lead to photo- and thermal stress, the formation of reactive oxygen species and oxidative stress. A series of factors, such as environmental conditions, grape variety and development stage modulate the final amount of damage. In turn, berries have evolved a series of mechanisms to protect themselves that are dependent on developmental stage [1]. Secondary metabolites such as the carotenoids, polyphenols and even the aroma compounds can act as antioxidants and light screens [2-4], however, the ability to upregulate their production depends on ripening stage [5]. This project aimed to evaluate the changes in secondary metabolism generated by varying degrees of sunburn damage in Chardonnay grapes, and how exposure of berries through defoliation at two different stages in development could modulate sunburn intensity.Field trials were conducted in two vineyards in the Orange region (NSW, Australia) during 2019. Treatments consisted of vines defoliated after the end of flowering, at véraison, and a non-defoliated control. Basic chemistry, carotenoids, polyphenols and free volatile analysis were conducted. Canopy mesoclimate, ultraviolet and photosynthetically active radiation, as well as berry temperature and radiation were monitored throughout the season using a range of sensors and light sensitive tapes.Sunburn damage was modulated by the specific meteorological conditions at each vineyard, and was higher at the warmest vineyard. Changes in grape composition were statistically significant between the different levels of sunburn damage, all of which could be clearly separated using MB-SO-PLS-LDA analysis. Among four different levels of damage studied, undamaged berries were the most distinct category and contained the highest levels of terpenes and lowest levels of polyphenols. As sunburn damage increased, an upregulation of compounds from the xanthophyll cycle was observed as well as of the flavonoids and flavan-3-ols, while a distinct destruction of chlorophyll a and b was also evident. Changes to concentrations of terpenes seemed to be mainly affected by temperature than radiation, and changes to specific aroma compounds such as the GLVs are reported for the first time. Comparison of defoliation treatments revealed that late defoliation led to a higher level and intensity of sunburn damage. Distinct biosynthetic mechanisms were apparent with regards to defoliation timing.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Joanna Gambetta, Leigh M. Schmidtke, Bruno Holzapfel

Charles Sturt University – Faculty of Science;  University of Adelaide, School of Agriculture, Food and Wine; South Australian Research and Development Institute, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia, School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia

Contact the author

Keywords

sunburn, leaf removal, chardonnay, carotenoids, polyphenols, aroma compounds

Citation

Related articles…

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,