GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Abstract

Context and purpose of the study – Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter. GDD, as being independent of the date variable, allows incorporating the effect of climate in the analysis. The present study was aimed to understand the variation between seasons and the effect of temperature in grape maturity and in bioclimatic index. We found correlations that allow predict the behavior of next years, based on growing degree days.

Material and methods – Temperatures were collected from national agro climatic network (AGROMET). Four meteorological stations were consulted depending on the location of the company vineyards. Growing degree days (GDD) were calculated with a base temperature of 10°C from September 1 through March 31. Huglin index, a bioclimatic index of the ripening period, was calculated using daily mean temperature, daily maximum temperature and a day length coefficient of 1, because the vineyard is placed in latitude lower 40°00´. Grape maturity was monitored once a week, recording the sugar concentration and the volume of grapes with Dyostem machine. These data was used to calculate the sugar loading dynamics and the date of sugar loading stop. In average, 145 blocks of Cabernet Sauvignon were measured from four different valleys (Maule valley (M), Curicó valley (C), Maipo Valley (Ma) and Rapel valley (R)).

Results – For the three valleys, the sugar loading stop was beginning at lower GDD for 2015 and 2017, influenced by the higher temperatures in January. But the average potential alcohol was lower in these years, reaching 12.1; 12.3; 13.1 and 11.4 %v/v at 2015 and 12.4; 11.3; 13.5 and 11.9 %v/v at 2017 for M, R, Ma y C respectively. The rate of sugar loading was higher in M and C valley than R and Ma valley for 2015 and 2017, indicating that the high temperatures affect greater R and Ma valley than the other valleys studied. Moreover, in 2017, the dynamics of maturity (mg of sugar per berry) were lower compared with 2015, due to the higher temperatures registered in Cabernet sauvignon blocks in January to April. The maximum temperatures in 2017 were 39.4°C including 13 days with temperatures over 35°C in M valley, 36°C including 7 days with temperatures over 35°C in R, 37°C including 5 days with temperatures over 35°C in Ma valley and 35.7°C including 3 days with temperatures over 35°C in C valley. These temperatures generated a blockage of vines. On the other hand, the year 2014 was the best season, with average potential alcohol at the sugar loading stop of 14.5; 13.6; 14 and 13%v/v for M, R, Ma and C valley. In 2014, the maximum quantity of sugar per berry was higher (250-350 mg of sugar per berry), perhaps because the vines have enough time to load sugars, with lower temperatures from January to April compared with the other years. A year to year comparison of the 4 valleys reveals that the maximum quantity of sugar per berry was decreasing the last three years, from 200-300 mg of sugar per berry in 2012, 2013 and 2015 to 170-260 in 2016, 2017 and 2018 approximately. Analyzing the bioclimatic index, M valley has a warm climate from 2014 onwards; C valley has a warm temperate climate from 2014 onwards and R and Ma valley has a warm climate the last two years. The data of bioclimatic index showed a tendency towards a warm climate. The GDD curves have a polynomic tendency respect to the date. These results could be used to predict GDD for 2019 and a probable date of harvest.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

M.Isabel MOENNE1*, Ricardo RODRIGUEZ1, Juan CURY1, Miguel RENCORET1

VSPT Wine Group, Avenida Vitacura 2670 Piso 16, Santiago, Chile

Contact the author

Keywords

grapevine, degree day, Cabernet, Sauvignon, climate, ripening, maturity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

Alcohol preference and health behaviors in patients with cardiometabolic diseases: insights from the multi-center iact cross-sectional study

Recognizing the influence of alcohol preference on health behaviors is essential for developing tailored interventions that effectively promote healthier lifestyles and optimize disease management strategies in the vulnerable population of patients with cardiometabolic diseases (CMD). The present study aims to provide valuable insights into how alcohol preference relates to dietary habits and medication adherence among patients with CMD diseases.

GrapeBreed4IPM: A horizon Europe project for sustainable viticulture through multi-actor breeding and innovation

Biodiversity loss and ecosystem degradation are among the greatest challenges of our time, and agriculture’s use of pesticides is a major driver.

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).