GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Abstract

Context and purpose of the study – Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter. GDD, as being independent of the date variable, allows incorporating the effect of climate in the analysis. The present study was aimed to understand the variation between seasons and the effect of temperature in grape maturity and in bioclimatic index. We found correlations that allow predict the behavior of next years, based on growing degree days.

Material and methods – Temperatures were collected from national agro climatic network (AGROMET). Four meteorological stations were consulted depending on the location of the company vineyards. Growing degree days (GDD) were calculated with a base temperature of 10°C from September 1 through March 31. Huglin index, a bioclimatic index of the ripening period, was calculated using daily mean temperature, daily maximum temperature and a day length coefficient of 1, because the vineyard is placed in latitude lower 40°00´. Grape maturity was monitored once a week, recording the sugar concentration and the volume of grapes with Dyostem machine. These data was used to calculate the sugar loading dynamics and the date of sugar loading stop. In average, 145 blocks of Cabernet Sauvignon were measured from four different valleys (Maule valley (M), Curicó valley (C), Maipo Valley (Ma) and Rapel valley (R)).

Results – For the three valleys, the sugar loading stop was beginning at lower GDD for 2015 and 2017, influenced by the higher temperatures in January. But the average potential alcohol was lower in these years, reaching 12.1; 12.3; 13.1 and 11.4 %v/v at 2015 and 12.4; 11.3; 13.5 and 11.9 %v/v at 2017 for M, R, Ma y C respectively. The rate of sugar loading was higher in M and C valley than R and Ma valley for 2015 and 2017, indicating that the high temperatures affect greater R and Ma valley than the other valleys studied. Moreover, in 2017, the dynamics of maturity (mg of sugar per berry) were lower compared with 2015, due to the higher temperatures registered in Cabernet sauvignon blocks in January to April. The maximum temperatures in 2017 were 39.4°C including 13 days with temperatures over 35°C in M valley, 36°C including 7 days with temperatures over 35°C in R, 37°C including 5 days with temperatures over 35°C in Ma valley and 35.7°C including 3 days with temperatures over 35°C in C valley. These temperatures generated a blockage of vines. On the other hand, the year 2014 was the best season, with average potential alcohol at the sugar loading stop of 14.5; 13.6; 14 and 13%v/v for M, R, Ma and C valley. In 2014, the maximum quantity of sugar per berry was higher (250-350 mg of sugar per berry), perhaps because the vines have enough time to load sugars, with lower temperatures from January to April compared with the other years. A year to year comparison of the 4 valleys reveals that the maximum quantity of sugar per berry was decreasing the last three years, from 200-300 mg of sugar per berry in 2012, 2013 and 2015 to 170-260 in 2016, 2017 and 2018 approximately. Analyzing the bioclimatic index, M valley has a warm climate from 2014 onwards; C valley has a warm temperate climate from 2014 onwards and R and Ma valley has a warm climate the last two years. The data of bioclimatic index showed a tendency towards a warm climate. The GDD curves have a polynomic tendency respect to the date. These results could be used to predict GDD for 2019 and a probable date of harvest.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

M.Isabel MOENNE1*, Ricardo RODRIGUEZ1, Juan CURY1, Miguel RENCORET1

VSPT Wine Group, Avenida Vitacura 2670 Piso 16, Santiago, Chile

Contact the author

Keywords

grapevine, degree day, Cabernet, Sauvignon, climate, ripening, maturity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

HOLISTIC APPROXIMATION OF THE INFLUENCE OF SACCHAROMYCES STRAINS ON WINE AROMA PRECURSORS

Wine varietal aroma is the result of a mixture of compounds formed or liberated from specific grape-aroma precursors. Their liberation/formation from their specific precursors can occur spontaneously by acid catalyzed rearrangements or hydrolysis or by the action of the yeast enzymatic activities. The influence of yeast during fermentation on the production of these volatile compounds has been widely studied however, the effect of this influence during aging is not fully understood. In order to evaluate these processes several indirect strategies have been used to study aroma precursors although they are not useful to understand the chemistry of the process.

Port wine region settling

Cet exposé présente une caractérisation générale de la Région Délimitée du Douro (RDD), productrice des appellations Porto (vins généreux), et Douro pour des vins de qualité VQPRD.

Effect of microwave maceration and SO2 free vinification on volatile composition of red wines

This study evaluates the effect of microwave treatment in grape maceration on the content of free and glycosidically bound varietal compounds) of must and wine and on the overall aroma of wines produced in the presence and absence of SO2.

Consumo hídrico de la vid, c.v. Listán negro, en la comarca de Tacoronte-Acentejo. Tenerife

Durante el bienio 1998-1999 se estudió el uso consuntivo de cultivos de viña var. Listán negro, en cuatro fincas situadas en la Comarca de Tacoronte-Acentejo, en la isla de Tenerife.

Arsenic in soil, leaves, grapes and wines

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries