GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Abstract

Context and purpose of the study – Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter. GDD, as being independent of the date variable, allows incorporating the effect of climate in the analysis. The present study was aimed to understand the variation between seasons and the effect of temperature in grape maturity and in bioclimatic index. We found correlations that allow predict the behavior of next years, based on growing degree days.

Material and methods – Temperatures were collected from national agro climatic network (AGROMET). Four meteorological stations were consulted depending on the location of the company vineyards. Growing degree days (GDD) were calculated with a base temperature of 10°C from September 1 through March 31. Huglin index, a bioclimatic index of the ripening period, was calculated using daily mean temperature, daily maximum temperature and a day length coefficient of 1, because the vineyard is placed in latitude lower 40°00´. Grape maturity was monitored once a week, recording the sugar concentration and the volume of grapes with Dyostem machine. These data was used to calculate the sugar loading dynamics and the date of sugar loading stop. In average, 145 blocks of Cabernet Sauvignon were measured from four different valleys (Maule valley (M), Curicó valley (C), Maipo Valley (Ma) and Rapel valley (R)).

Results – For the three valleys, the sugar loading stop was beginning at lower GDD for 2015 and 2017, influenced by the higher temperatures in January. But the average potential alcohol was lower in these years, reaching 12.1; 12.3; 13.1 and 11.4 %v/v at 2015 and 12.4; 11.3; 13.5 and 11.9 %v/v at 2017 for M, R, Ma y C respectively. The rate of sugar loading was higher in M and C valley than R and Ma valley for 2015 and 2017, indicating that the high temperatures affect greater R and Ma valley than the other valleys studied. Moreover, in 2017, the dynamics of maturity (mg of sugar per berry) were lower compared with 2015, due to the higher temperatures registered in Cabernet sauvignon blocks in January to April. The maximum temperatures in 2017 were 39.4°C including 13 days with temperatures over 35°C in M valley, 36°C including 7 days with temperatures over 35°C in R, 37°C including 5 days with temperatures over 35°C in Ma valley and 35.7°C including 3 days with temperatures over 35°C in C valley. These temperatures generated a blockage of vines. On the other hand, the year 2014 was the best season, with average potential alcohol at the sugar loading stop of 14.5; 13.6; 14 and 13%v/v for M, R, Ma and C valley. In 2014, the maximum quantity of sugar per berry was higher (250-350 mg of sugar per berry), perhaps because the vines have enough time to load sugars, with lower temperatures from January to April compared with the other years. A year to year comparison of the 4 valleys reveals that the maximum quantity of sugar per berry was decreasing the last three years, from 200-300 mg of sugar per berry in 2012, 2013 and 2015 to 170-260 in 2016, 2017 and 2018 approximately. Analyzing the bioclimatic index, M valley has a warm climate from 2014 onwards; C valley has a warm temperate climate from 2014 onwards and R and Ma valley has a warm climate the last two years. The data of bioclimatic index showed a tendency towards a warm climate. The GDD curves have a polynomic tendency respect to the date. These results could be used to predict GDD for 2019 and a probable date of harvest.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

M.Isabel MOENNE1*, Ricardo RODRIGUEZ1, Juan CURY1, Miguel RENCORET1

VSPT Wine Group, Avenida Vitacura 2670 Piso 16, Santiago, Chile

Contact the author

Keywords

grapevine, degree day, Cabernet, Sauvignon, climate, ripening, maturity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated