terclim by ICS banner
IVES 9 IVES Conference Series 9 Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Abstract

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Results showed that genotypes harbouring more than one resistance gene such as Soreli (Rpv3 + Repv12), S. Rytos (Rpv 3 + Ren3) or Julius (Rpv12 + Ren3), are more resilient to both diseases, regardless of whether both are against the same disease, suggesting a synergistic effect. Moreover, cultivars more resilient to both mildews did not show any reduction in yield, compared to C. Volos that showed a 42,5% reduction, S. Kretos about 50% or controls Viura (62,3%) and Tempranillo (65,5%) in productivity during the disease-pressured season. Further research will focus on the role of rhizospheric microbiome on disease incidence.

 

Acknowledgments: This work has been funded by the Government of La Rioja, (Fortalece 2021/08). Support from the CIDA’s staff and the Plant Resources service of the ICVV is gratefully acknowledged.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Sara I. Blanco – González, M.M. Hernández*, C.M. Menéndez

Instituto de Ciencias de la Vid y el Vino (ICVV (UR-GR-CSIC)), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain

Contact the author*

Keywords

PIWI, powdery mildew, downey mildew, sustainable viticulture, biotic stress

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.

Innovative strategies for reducing astringency in mandilaria wines 

Mandilaria, a red grape variety indigenous to the Aegean islands, is well known for its robust tannins and pronounced astringency, which can challenge the palatability and marketability of its wines. The aim of this study was the reduction of astringency in wines made exclusively from mandilaria grapes through dehydrations practices and targeted winery applications.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Biodiversity of non-saccharomyces yeasts from Uruguayan vineyards: lachancea thermotolerans and its potential in fermented beverages

Non-saccharomyces yeasts play a crucial role in fermentation, producing a variety of secondary metabolites and enzymes that contribute to aromatic and sensory complexity compared to saccharomyces yeasts. It is crucial to understand and control the dynamics of non-saccharomyces yeasts to produce distinctive and high-quality fermented beverages.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).