GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Abstract

Context and purpose of the study – The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine. The aim of this study was to evaluate the ability of δ13C to differentiate wine growing regions of Uruguay by the relationship between the isotope indicator and the main productive variables.

Material and methods – The study was conducted in 2018 in commercial vineyards of the Tannat variety grafted on to SO4 rootstock, trained in a trellis system. The vines were planted in a four different climate regions for Uruguay determined by Multicriterial Classification system (MCC): 1-IH5, IF2, IS1-Salto (North, corresponds to a warm climate, cool nights and moderate drought), 2- IH4, IF2, IS1-Durazno (Center, corresponds toa temperate-warm climate, nights and moderate drought), 3- IH4, IF1, IS1-Colonia (Northwest, corresponds to a temperate-warm climate, warm nights, moderate drought), and 4- IH3, IF2,IS1-Canelones (South corresponds to a temperate climate, cool nights and moderate drought). Climatic data were obtained from meteorological stations in each region according to World Meteorological Otganization (WMO standards). For each climatic region, the state hydric of the plant (ψb) was determined in four moments in the cycle; at harvest: berry weight, free amino nitrogen in must, δ13C in berries, pH, acidity, sugars and total and extractable anthocyanins it was determined.

Results – In the studied zones, under rainfed conditions, the values of δ13C were correlated to the water deficit. The δ13C was strongly correlated with the hydric state of the plant and allowed to differentiate the two most extreme climatic regions (1 and 4). The most negative δ13C values were obtained in climatic zone 1 (warm), explained by the rainfall accumulated during the maturation period. The δ13C showed significant correlations with the weight of the berry for each of the zones, free amino nitrogen in the berry, total and extractable anthocyanins, and the total acidity. These results indicate that δ13C, is an interesting indicator to evaluate the quality of the grape and confirm climatic regions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Gustavo PEREYRA1*, Leandro ARRILLAGA1, Julia SALVARREY1, Veronica BERRIEL2, Milka FERRER1

1 Producción Vegetal-Viticultura, FAGRO-UdelaR, 780 Garzón,12900 Montevideo, Uruguay
2 Suelos y Aguas, FAGRO-UdelaR, 780 Garzón, 12900 Montevideo, Uruguay

Contact the author

Keywords

δ13C, Tannat, water status, climatic regions

Tags

Citation

Related articles…

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].

Impact of canopy management on thiol precursors in white grapes: a six-year field study

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.
Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10).

Assessment of alternative sweetening methods for dealcoholized wine

In recent years, there has been an increase in demand for non-alcoholic wine with an ethanol content of less than 0.5% v/v. The dealcoholization process can take place by various methods, such as vacuum distillation or membrane technologies like osmotic distillation. Compared to distillation, membrane systems often require multiple passes or a combination of multiple separation methods. Complete or almost complete removal of ethanol significantly changes the sensory characteristics of wine.

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Non-saccharomyces yeasts in the biocontrol of grape molds in vineyards to reduce the use of pesticides

The wide diffusion of organic cultivation of vineyards and the need to reduce the use of pesticides highlights the urgent need for alternative and sustainable methods of vine protection by pathogen molds.