GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Abstract

Context and purpose of the study – The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine. The aim of this study was to evaluate the ability of δ13C to differentiate wine growing regions of Uruguay by the relationship between the isotope indicator and the main productive variables.

Material and methods – The study was conducted in 2018 in commercial vineyards of the Tannat variety grafted on to SO4 rootstock, trained in a trellis system. The vines were planted in a four different climate regions for Uruguay determined by Multicriterial Classification system (MCC): 1-IH5, IF2, IS1-Salto (North, corresponds to a warm climate, cool nights and moderate drought), 2- IH4, IF2, IS1-Durazno (Center, corresponds toa temperate-warm climate, nights and moderate drought), 3- IH4, IF1, IS1-Colonia (Northwest, corresponds to a temperate-warm climate, warm nights, moderate drought), and 4- IH3, IF2,IS1-Canelones (South corresponds to a temperate climate, cool nights and moderate drought). Climatic data were obtained from meteorological stations in each region according to World Meteorological Otganization (WMO standards). For each climatic region, the state hydric of the plant (ψb) was determined in four moments in the cycle; at harvest: berry weight, free amino nitrogen in must, δ13C in berries, pH, acidity, sugars and total and extractable anthocyanins it was determined.

Results – In the studied zones, under rainfed conditions, the values of δ13C were correlated to the water deficit. The δ13C was strongly correlated with the hydric state of the plant and allowed to differentiate the two most extreme climatic regions (1 and 4). The most negative δ13C values were obtained in climatic zone 1 (warm), explained by the rainfall accumulated during the maturation period. The δ13C showed significant correlations with the weight of the berry for each of the zones, free amino nitrogen in the berry, total and extractable anthocyanins, and the total acidity. These results indicate that δ13C, is an interesting indicator to evaluate the quality of the grape and confirm climatic regions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Gustavo PEREYRA1*, Leandro ARRILLAGA1, Julia SALVARREY1, Veronica BERRIEL2, Milka FERRER1

1 Producción Vegetal-Viticultura, FAGRO-UdelaR, 780 Garzón,12900 Montevideo, Uruguay
2 Suelos y Aguas, FAGRO-UdelaR, 780 Garzón, 12900 Montevideo, Uruguay

Contact the author

Keywords

δ13C, Tannat, water status, climatic regions

Tags

Citation

Related articles…

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

Rootstocks: how the dark side of the vine can enlight the future?

Global challenges, including adaptation to climate change, decrease of the environmental impacts and maintenance of the economical sustainability shape the future of viticulture.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

Environmental and yearly influences on four Sicilian grape clones under climate change challenges

By the end of this century, up to 90% of traditional viticulture regions in the Mediterranean, including Sicily, are projected to face extinction due to escalating climate challenges such as severe droughts, heatwaves, and unseasonal rains.