GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Abstract

Context and purpose of the study – The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine. The aim of this study was to evaluate the ability of δ13C to differentiate wine growing regions of Uruguay by the relationship between the isotope indicator and the main productive variables.

Material and methods – The study was conducted in 2018 in commercial vineyards of the Tannat variety grafted on to SO4 rootstock, trained in a trellis system. The vines were planted in a four different climate regions for Uruguay determined by Multicriterial Classification system (MCC): 1-IH5, IF2, IS1-Salto (North, corresponds to a warm climate, cool nights and moderate drought), 2- IH4, IF2, IS1-Durazno (Center, corresponds toa temperate-warm climate, nights and moderate drought), 3- IH4, IF1, IS1-Colonia (Northwest, corresponds to a temperate-warm climate, warm nights, moderate drought), and 4- IH3, IF2,IS1-Canelones (South corresponds to a temperate climate, cool nights and moderate drought). Climatic data were obtained from meteorological stations in each region according to World Meteorological Otganization (WMO standards). For each climatic region, the state hydric of the plant (ψb) was determined in four moments in the cycle; at harvest: berry weight, free amino nitrogen in must, δ13C in berries, pH, acidity, sugars and total and extractable anthocyanins it was determined.

Results – In the studied zones, under rainfed conditions, the values of δ13C were correlated to the water deficit. The δ13C was strongly correlated with the hydric state of the plant and allowed to differentiate the two most extreme climatic regions (1 and 4). The most negative δ13C values were obtained in climatic zone 1 (warm), explained by the rainfall accumulated during the maturation period. The δ13C showed significant correlations with the weight of the berry for each of the zones, free amino nitrogen in the berry, total and extractable anthocyanins, and the total acidity. These results indicate that δ13C, is an interesting indicator to evaluate the quality of the grape and confirm climatic regions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Gustavo PEREYRA1*, Leandro ARRILLAGA1, Julia SALVARREY1, Veronica BERRIEL2, Milka FERRER1

1 Producción Vegetal-Viticultura, FAGRO-UdelaR, 780 Garzón,12900 Montevideo, Uruguay
2 Suelos y Aguas, FAGRO-UdelaR, 780 Garzón, 12900 Montevideo, Uruguay

Contact the author

Keywords

δ13C, Tannat, water status, climatic regions

Tags

Citation

Related articles…

Un jour, l’AOD (Appellation d’Origine viticole Durable), fusion de l’origine et de la durabilité

The evolution of wine quality issues is historically expressed by the passage from wine quality (what is a wine?) to wine quality (what is a good wine?). Perhaps the next question could be: what is a good sustainable wine? To contribute to reflection on this theme, it may be worthwhile to undertake an exercise in prospective fiction, which we have identified in the hypothesis of the AOD, the “appellation d’origine durable”, a scenario we will develop in the light of developments in the wine industry and the regulation on geographical indications.

Trends and challenges in International Wine Trade. The need for new strategies for companies and regions.

Trends already extended for more than 12 years show a decline in both consumption and international trade, particularly in volume. However, there are also positive signs in several categories of wine, segments and markets, as well as a better trend in terms of value. How are these trends affecting wine producers and distributors? Are they short or long term? do they mean radical and permanent changes to which a way of adaptation has to be found or are they just temporary changes that may only require some calm? How are companies adapting to these new trends? Which are their effects on wine regions?

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Enhancing vine resilience and protecting grape production in Mediterranean vineyards: the role of anti-hail shading nets and kaolin applications

Climate change and rising temperatures present a substantial challenge to viticulture, intensifying summer heat stress and accelerating berry ripening.

Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

The correlations between vine water deficit cumulated over the ripening period of grapes, assessed by ΔC13 in must sugar, and the main analytic variables of grapes are significant. As a result ΔC13 is a useful tool in zoning homogeneous areas according to their technological qualities when harvesting.