GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

Abstract

Context and purpose of the study – The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine. The aim of this study was to evaluate the ability of δ13C to differentiate wine growing regions of Uruguay by the relationship between the isotope indicator and the main productive variables.

Material and methods – The study was conducted in 2018 in commercial vineyards of the Tannat variety grafted on to SO4 rootstock, trained in a trellis system. The vines were planted in a four different climate regions for Uruguay determined by Multicriterial Classification system (MCC): 1-IH5, IF2, IS1-Salto (North, corresponds to a warm climate, cool nights and moderate drought), 2- IH4, IF2, IS1-Durazno (Center, corresponds toa temperate-warm climate, nights and moderate drought), 3- IH4, IF1, IS1-Colonia (Northwest, corresponds to a temperate-warm climate, warm nights, moderate drought), and 4- IH3, IF2,IS1-Canelones (South corresponds to a temperate climate, cool nights and moderate drought). Climatic data were obtained from meteorological stations in each region according to World Meteorological Otganization (WMO standards). For each climatic region, the state hydric of the plant (ψb) was determined in four moments in the cycle; at harvest: berry weight, free amino nitrogen in must, δ13C in berries, pH, acidity, sugars and total and extractable anthocyanins it was determined.

Results – In the studied zones, under rainfed conditions, the values of δ13C were correlated to the water deficit. The δ13C was strongly correlated with the hydric state of the plant and allowed to differentiate the two most extreme climatic regions (1 and 4). The most negative δ13C values were obtained in climatic zone 1 (warm), explained by the rainfall accumulated during the maturation period. The δ13C showed significant correlations with the weight of the berry for each of the zones, free amino nitrogen in the berry, total and extractable anthocyanins, and the total acidity. These results indicate that δ13C, is an interesting indicator to evaluate the quality of the grape and confirm climatic regions.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Gustavo PEREYRA1*, Leandro ARRILLAGA1, Julia SALVARREY1, Veronica BERRIEL2, Milka FERRER1

1 Producción Vegetal-Viticultura, FAGRO-UdelaR, 780 Garzón,12900 Montevideo, Uruguay
2 Suelos y Aguas, FAGRO-UdelaR, 780 Garzón, 12900 Montevideo, Uruguay

Contact the author

Keywords

δ13C, Tannat, water status, climatic regions

Tags

Citation

Related articles…

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Grassland and patch scale diversity in supporting avian diversity and potential ecosystem services

The composition and structure of vineyard landscapes significantly affect bird communities and the ecosystem services they provide in agriculture.

Impact of changes in pruning practices on vine growth and yield

A gradual decline in vineyards has been observed over the past twenty years worldwide. This might be explained by the climate change, practices change or the increase of dieback diseases. To increase the longevity of vines, we studied the impact of different pruning strategies in four adult and four young vineyards located in France and Spain. In France, vineyards were planted with Cabernet franc on 3309C while Spanish trials were planted with Tempranillo grafted on 110R. Vegetative expression, yield, quality of berries and wood vessels conductivity were measured. The distribution of vegetative expression, yield and berry composition between primary and secondary vegetation were quantified. Finally, tomography was used to evaluate the implication of the treatments on sap flows.
First results show that i) the respectful pruning leads to an increase of 30 to 50% more secondary shoots than the aggressive pruning in France and between 15 and 20% in Spain, ii) there is no major effect on the yield over the first two years following the implementation of the new pruning practices, although the proportion of clusters from suckers is higher on the respectful pruning method. On young vines, the development of the trunk according to a respectful pruning leads to a loss of harvest 2 years after planting. This is due to the removal, on the future trunk, of the green suckers which carrying bunches. This operation carried out in spring rather than during winter pruning, would promote a better leaf / fruit balance when the plant comes into production, and could lead to better hydraulic conduction in the vessels of the trunk. Maintaining these trials for several years will provide more robust data to assess the impact of these practices on the vines over the long term.