Terroir 2020 banner
IVES 9 IVES Conference Series 9 Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Abstract

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change. 

Methods and Results: The experiment for measuring the vertical temperature gradient has been set up in the Bordeaux area in 2016. Three replicates of four temperature sensors were installed on vine posts inside two adjacent vineyard parcels at different heights above ground: 30 cm, 60 cm, 90 cm and 120 cm. One parcel was managed with cover crop whereas in the other the soil was tilled.

The results of this study reveal an effect of measurement height and soil management modality on bioclimatic indices. The higher temperature sums are reached close to the ground, particularly on the parcel with cover crop. Only a small effect on delaying ripeness has been shown in this study. The increase of trunk height might minimize potential damage of both frost and heat wave events. Soil tilling also allows limiting spring frost risks. 

In order to better understand the explanatory factors impacting the vertical temperature gradients, different climatic factors (average temperature, wind, precipitation, insolation fraction) and soil moisture were studied by using the data of the weather station of Saint-Emilion (Météo-France). A strong effect of soil moisture was shown on maximum temperature gradients. Projections of climate change agree on an increase in air temperature in the future. Assuming the same rainfall patterns, this increase of temperature is likely to reduce soil moisture, and increase vertical gradients in maximum temperature. Taking into account this evolution, the increase of trunk height could be a promising adaptation. 

Conclusion: 

This study investigated the vertical temperature gradient and the driving factors for this gradient. Results show that rather than delaying the maturity, the increased of trunk height could be a solution to limit the negative impacts of frost and heat waves. This study also highlighted the impact of soil management and moisture on this gradient. 

Significance and Impact of the Study: The recent evolution of climate already has an impact on vine development and grape composition and it becomes necessary to implement adaptation strategies. The training system is one of the first potential levers for adaptation, relatively easy to implement. This study provides results on the impact of an increased of trunk height and soil management on temperature in the canopy, particularly in the fruit zone, assuming temperature profiles would not change. 

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Laure de Rességuier1*, Philippe Pieri1, Romain Pons1, Pierre Boudet1, Théo Petitjean1, Séverine Mary2, Cornelis van Leeuwen1

1EGFV, University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d’Ornon, France
2VITINNOV, Bordeaux Sciences Agro, ISVV, 33175 Gradignan Cedex, France

Contact the author

Keywords

Vineyard soil management, vertical temperature gradient, grapevine training system, climate change

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

NIR based sensometric approach for consumer preference evaluation

Climate change has had a global impact on grape production, and as a result, developing table grape varieties that can withstand climate-related threats has become a significant goal. However, it is equally important to ensure that these new grape varieties meet the preferences of consumers. To achieve this goal, a procedure has been developed that combines sensory analysis with spectroscopic data collected in the NIR region. Each sample was analyzed using both traditional analytical techniques and non-destructive NIR spectroscopy.

Exploring the potential of Hanseniaspora vineae for quality wines production

Traditionally, non-saccharomyces yeasts were deemed undesirable in winemaking, for this reason, it is a common practice to add sulphites to prevent their proliferation during the initial stages of vinification. However, the current research on yeast diversity has unveiled numerous non-saccharomyces strains possessing advantageous traits that enrich the sensory profile of wines. The genus hanseniaspora is often associated with wine fermentation and is also commonly found on grapes.

NOVEL BENZENETHIOLS WITH PHENOLS CAUSE ASHY, SMOKE FLAVOR PERCEPTION IN RED WINES

Smoke impacts on wines are becoming a worldwide problem; the size and severity of wildfires increasing due to influences from changing climates.¹ For over a century, wines have been known to have a unique issue of absorbing chemical compounds derived from wildfire smoke wherein the flavor of the subsequent wine becomes ashy, rubbery, campfire-like, and smoky.² The economic impacts of a smoke-impacted wine can last for years depending on the grape varietal, costing Oregon and Washington states in the United States over a billion dollars from the 2020 wildfires, as an example.³ While years of research have indicated elevated concentrations of smoke-related compounds, such as guaiacol and syringol, in wines after smoke events, unfortunately, replicating the sensory experience using smoke-associated phenols has not had much success.⁴

Estimation of degree brix in grapes by proximal hyperspectral sensing and nanosatellite imagery through the random forest regressor

The assessment of physiological parameters in vineyards can be done by direct measurements or by remote, indirect methods. The latter option frequently yields useful data, and development of methods and techniques that make them possible is worthwhile. One of the parameters most looked for to define the quality status of a vineyard is the degree Brix of its grapes, a quantity usually determined by direct measurement.

Marketing and zoning (“Great Zoning”): researches and various considerations

Dans de précédents travaux sur le zonage “GRANDE ZONAZIONE” (GZ) (“Grand Zonage”), on a traité, entre autre, de la “GRANDE FILIERA” (GF) (Grande filière) où parmi les 54 descripteurs prévus pour lire et évaluer par exemple un zonage, sont compris aussi la Communication