OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Abstract

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging. More recently, and as previously described for Saccharomyces cerevisiae, the persistence of winery resident flora (non-Saccharomyces yeasts) over time and its contribution to the alcoholic fermentation have been demonstrated. Also, winery surfaces were described as a true ecological niche and a transitional habitat for this resident flora. 

To our knowledge, no study has been done on the evolution and persistence of indigenous yeast flora in a new winery nor on the capacities of this indigenous flora to persist in the winery environment. Thus, the first objective of this work is to study the diversity and to follow the evolution of fungal communities in a new established winery operating only with indigenous yeast flora and for a period of 3 vintages (2016, 2017 and 2018). For this purpose, samples were collected from three different winery surfaces (soil, walls and equipment), at separate time points (before grape harvest, during the fermenting phase and 3 months after the fermentations) and were analyzed using the Mi-Seq sequencing. In a second objective, genetic diversity, persistence in winery environments and the implantation in must /or wine of indigenous S. cerevisiae isolates were monitored for all the collected samples using microsatellites PCRs. In addition, the killer character and biofilm formation of different isolated strains were investigated to determine potential capacities to persist in winery environments. 

The results obtained showed a high fungal diversity (yeasts, fungi and mold) on the 3 winery environments even before the first grape harvest (2016). As for yeasts, previously described genera (Candida, Metschinikowia, Rhodotorula, Saccharomyces, Wickerhamomyces, …) have been identified on winery surfaces but also yeast genera (Buckleyzyma, Curvibasidium, Leucosporidium, …) that have not been before described in the winemaking process. Then, the observed fungal diversity showed evolution over time and dependently according to each of the studied environment. Additionally, some fungal equilibria appears to take place between genera such as Aureobasidium, Candida and Wickerhamomyces. 

Concerning indigenous S. cerevisiae strains, our results demonstrated the potential implantation and persistence of some strains present in the winery environment during 2017 and 2018 vintages and during the alcoholic fermentations. Thus, selected strains of indigenous S. cerevisiae seem to have different physiological characteristics that could explain their potential persistence in winery environments.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Hany Abdo 1, Claudia Rita Catacchio 2, Mario Ventura 2, Julie Laurent 1, Hervé Alexandre 1, Michele Guilloux-Benatier 1, Sandrine Rousseaux 1

1. Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
2. Department of Biology, University of Bari, Bari 70125, Italy

Contact the author

Keywords

Fungal diversity and dynamics, New winery, Fungal resident flora, Saccharomyces cerevisiae

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

The effect of short and long-term water deficit on physiological performance and leaf microbiome of different rootstock and scion combinations

Climate change, particularly drought stress, threatens viticulture sustainability. Understanding scion-rootstock interactions and their link to the grapevine microbiome is key to improving vine health, productivity, and drought resilience.

Influence on grape aroma of nitrogen compounds and elicitors foliar applications in vineyards

The grape volatile compounds determine the wine quality and typicity [1]. Thus, looking for agronomic tools to improve its composition it is of great interest in the sector [2]

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.