OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Abstract

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging. More recently, and as previously described for Saccharomyces cerevisiae, the persistence of winery resident flora (non-Saccharomyces yeasts) over time and its contribution to the alcoholic fermentation have been demonstrated. Also, winery surfaces were described as a true ecological niche and a transitional habitat for this resident flora. 

To our knowledge, no study has been done on the evolution and persistence of indigenous yeast flora in a new winery nor on the capacities of this indigenous flora to persist in the winery environment. Thus, the first objective of this work is to study the diversity and to follow the evolution of fungal communities in a new established winery operating only with indigenous yeast flora and for a period of 3 vintages (2016, 2017 and 2018). For this purpose, samples were collected from three different winery surfaces (soil, walls and equipment), at separate time points (before grape harvest, during the fermenting phase and 3 months after the fermentations) and were analyzed using the Mi-Seq sequencing. In a second objective, genetic diversity, persistence in winery environments and the implantation in must /or wine of indigenous S. cerevisiae isolates were monitored for all the collected samples using microsatellites PCRs. In addition, the killer character and biofilm formation of different isolated strains were investigated to determine potential capacities to persist in winery environments. 

The results obtained showed a high fungal diversity (yeasts, fungi and mold) on the 3 winery environments even before the first grape harvest (2016). As for yeasts, previously described genera (Candida, Metschinikowia, Rhodotorula, Saccharomyces, Wickerhamomyces, …) have been identified on winery surfaces but also yeast genera (Buckleyzyma, Curvibasidium, Leucosporidium, …) that have not been before described in the winemaking process. Then, the observed fungal diversity showed evolution over time and dependently according to each of the studied environment. Additionally, some fungal equilibria appears to take place between genera such as Aureobasidium, Candida and Wickerhamomyces. 

Concerning indigenous S. cerevisiae strains, our results demonstrated the potential implantation and persistence of some strains present in the winery environment during 2017 and 2018 vintages and during the alcoholic fermentations. Thus, selected strains of indigenous S. cerevisiae seem to have different physiological characteristics that could explain their potential persistence in winery environments.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Hany Abdo 1, Claudia Rita Catacchio 2, Mario Ventura 2, Julie Laurent 1, Hervé Alexandre 1, Michele Guilloux-Benatier 1, Sandrine Rousseaux 1

1. Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
2. Department of Biology, University of Bari, Bari 70125, Italy

Contact the author

Keywords

Fungal diversity and dynamics, New winery, Fungal resident flora, Saccharomyces cerevisiae

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

The terroir offers great variability in the typicity of the wines produced. Following tastings integrating several vintages, the multiple factor analysis of the sensory data revealed a group of taste criteria contributing to the notion of “Power”, referenced “Power and Harmony”, which makes it possible to differentiate wines from various terroirs of the Middle Loire Valley (Pages et al ., 1987).