OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Abstract

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging. More recently, and as previously described for Saccharomyces cerevisiae, the persistence of winery resident flora (non-Saccharomyces yeasts) over time and its contribution to the alcoholic fermentation have been demonstrated. Also, winery surfaces were described as a true ecological niche and a transitional habitat for this resident flora. 

To our knowledge, no study has been done on the evolution and persistence of indigenous yeast flora in a new winery nor on the capacities of this indigenous flora to persist in the winery environment. Thus, the first objective of this work is to study the diversity and to follow the evolution of fungal communities in a new established winery operating only with indigenous yeast flora and for a period of 3 vintages (2016, 2017 and 2018). For this purpose, samples were collected from three different winery surfaces (soil, walls and equipment), at separate time points (before grape harvest, during the fermenting phase and 3 months after the fermentations) and were analyzed using the Mi-Seq sequencing. In a second objective, genetic diversity, persistence in winery environments and the implantation in must /or wine of indigenous S. cerevisiae isolates were monitored for all the collected samples using microsatellites PCRs. In addition, the killer character and biofilm formation of different isolated strains were investigated to determine potential capacities to persist in winery environments. 

The results obtained showed a high fungal diversity (yeasts, fungi and mold) on the 3 winery environments even before the first grape harvest (2016). As for yeasts, previously described genera (Candida, Metschinikowia, Rhodotorula, Saccharomyces, Wickerhamomyces, …) have been identified on winery surfaces but also yeast genera (Buckleyzyma, Curvibasidium, Leucosporidium, …) that have not been before described in the winemaking process. Then, the observed fungal diversity showed evolution over time and dependently according to each of the studied environment. Additionally, some fungal equilibria appears to take place between genera such as Aureobasidium, Candida and Wickerhamomyces. 

Concerning indigenous S. cerevisiae strains, our results demonstrated the potential implantation and persistence of some strains present in the winery environment during 2017 and 2018 vintages and during the alcoholic fermentations. Thus, selected strains of indigenous S. cerevisiae seem to have different physiological characteristics that could explain their potential persistence in winery environments.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Hany Abdo 1, Claudia Rita Catacchio 2, Mario Ventura 2, Julie Laurent 1, Hervé Alexandre 1, Michele Guilloux-Benatier 1, Sandrine Rousseaux 1

1. Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
2. Department of Biology, University of Bari, Bari 70125, Italy

Contact the author

Keywords

Fungal diversity and dynamics, New winery, Fungal resident flora, Saccharomyces cerevisiae

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.

Evaluation des impacts environnementaux des itinéraires techniques viticoles de production de vins AOP en Val de Loire: démarche d’adaptation de la méthode de l’analyse du cycle de vie (ACV)

La société et l’état imposent plus que jamais à la viticulture française de prendre en compte ses impacts environnementaux tout en produisant des vins de qualité. Après avoir présenté ces impacts, les auteurs exposent la méthode de l’Analyse du Cycle de Vie. Ils proposent une démarche pour sa mise au point pour évaluer les impacts environnementaux en viticulture AOP en Val de Loire dans le cadre de l’évaluation de la compatibilité des objectifs qualitatifs et environnementaux de la production de raisins de cuve.

Development of a new commercial phenolic analysis method for red grapes

Grape phenolic content is an important quality factor that influences the appearance and mouthfeel of premium red wines.

Impact of dosage sugar-type and ageing on finished sparkling wine composition and development of Maillard reaction-associated compounds

The Maillard reaction (MR) is a non-enzymatic reaction between reducing sugars and amino acids, resulting in the production of volatile and flavour-active compounds.

Étude des relations sol-vigne sur le vignoble de Côte Rôtie

La topographie du vignoble de Côte Rôtie, la prédominance de la non culture ainsi que la structure très légère des sols amènent les vignerons à s’interroger sur l’entretien du sol, la conduite de la fertilisation de leurs parcelles ainsi que sur le développement racinaire de la vigne.