OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Abstract

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging. More recently, and as previously described for Saccharomyces cerevisiae, the persistence of winery resident flora (non-Saccharomyces yeasts) over time and its contribution to the alcoholic fermentation have been demonstrated. Also, winery surfaces were described as a true ecological niche and a transitional habitat for this resident flora. 

To our knowledge, no study has been done on the evolution and persistence of indigenous yeast flora in a new winery nor on the capacities of this indigenous flora to persist in the winery environment. Thus, the first objective of this work is to study the diversity and to follow the evolution of fungal communities in a new established winery operating only with indigenous yeast flora and for a period of 3 vintages (2016, 2017 and 2018). For this purpose, samples were collected from three different winery surfaces (soil, walls and equipment), at separate time points (before grape harvest, during the fermenting phase and 3 months after the fermentations) and were analyzed using the Mi-Seq sequencing. In a second objective, genetic diversity, persistence in winery environments and the implantation in must /or wine of indigenous S. cerevisiae isolates were monitored for all the collected samples using microsatellites PCRs. In addition, the killer character and biofilm formation of different isolated strains were investigated to determine potential capacities to persist in winery environments. 

The results obtained showed a high fungal diversity (yeasts, fungi and mold) on the 3 winery environments even before the first grape harvest (2016). As for yeasts, previously described genera (Candida, Metschinikowia, Rhodotorula, Saccharomyces, Wickerhamomyces, …) have been identified on winery surfaces but also yeast genera (Buckleyzyma, Curvibasidium, Leucosporidium, …) that have not been before described in the winemaking process. Then, the observed fungal diversity showed evolution over time and dependently according to each of the studied environment. Additionally, some fungal equilibria appears to take place between genera such as Aureobasidium, Candida and Wickerhamomyces. 

Concerning indigenous S. cerevisiae strains, our results demonstrated the potential implantation and persistence of some strains present in the winery environment during 2017 and 2018 vintages and during the alcoholic fermentations. Thus, selected strains of indigenous S. cerevisiae seem to have different physiological characteristics that could explain their potential persistence in winery environments.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Hany Abdo 1, Claudia Rita Catacchio 2, Mario Ventura 2, Julie Laurent 1, Hervé Alexandre 1, Michele Guilloux-Benatier 1, Sandrine Rousseaux 1

1. Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
2. Department of Biology, University of Bari, Bari 70125, Italy

Contact the author

Keywords

Fungal diversity and dynamics, New winery, Fungal resident flora, Saccharomyces cerevisiae

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Description of the effect of the practical management in the characterization of « terroir effect »

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential.

Estudio comparativo del potencial enológico de dos varietales tintos cultivados en la isla de Tenerife

En el presente trabajo se ha realizado un estudio comparativo entre los varietales tintos Listán negro y Negramolle en la Denominación de Origen Tacoronte-Acentejo. Se han determinado durante dos años

Management of cover plants impacted the composition of Cabernet Sauvignon red wines in a temperate region of Brazil

– Several practices can be applied to vineyards in order to ensure good healthy for grapevines, adequate yield and fruit quality. Among them, the use of cover crops is a relevant option for soil management. It increases the organic matter, improves water infiltration, reduces risks of soil erosion and greenhouse gas emissions, in addition improving biodiversity in the vineyard.

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity.

Closure permeability modulates the aroma expression of monovarietal white wines during bottle ageing

Bottle ageing is a critical period for wine quality, as it undergoes various chemical and sensory changes during storage. Ideally, a phase of qualitative ageing, during which wine sensory quality improves, is followed by a decline of quality. Understanding how different oenological variables influence these phases is a key challenge in modern winemaking. Recent studies highlighted the significant role of oxygen in modulating reactions involving volatile and non-volatile components, impacting aroma evolution during bottle aging. Oxygen exposure of wine during bottle ageing is mediated by closure.