OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Fungal resident flora of a new winery: colonization, dynamics and potential persistence capacities

Abstract

Through the years, extensive studies have been conducted on fungal biodiversity during the winemaking process: from the vineyard until aging. More recently, and as previously described for Saccharomyces cerevisiae, the persistence of winery resident flora (non-Saccharomyces yeasts) over time and its contribution to the alcoholic fermentation have been demonstrated. Also, winery surfaces were described as a true ecological niche and a transitional habitat for this resident flora. 

To our knowledge, no study has been done on the evolution and persistence of indigenous yeast flora in a new winery nor on the capacities of this indigenous flora to persist in the winery environment. Thus, the first objective of this work is to study the diversity and to follow the evolution of fungal communities in a new established winery operating only with indigenous yeast flora and for a period of 3 vintages (2016, 2017 and 2018). For this purpose, samples were collected from three different winery surfaces (soil, walls and equipment), at separate time points (before grape harvest, during the fermenting phase and 3 months after the fermentations) and were analyzed using the Mi-Seq sequencing. In a second objective, genetic diversity, persistence in winery environments and the implantation in must /or wine of indigenous S. cerevisiae isolates were monitored for all the collected samples using microsatellites PCRs. In addition, the killer character and biofilm formation of different isolated strains were investigated to determine potential capacities to persist in winery environments. 

The results obtained showed a high fungal diversity (yeasts, fungi and mold) on the 3 winery environments even before the first grape harvest (2016). As for yeasts, previously described genera (Candida, Metschinikowia, Rhodotorula, Saccharomyces, Wickerhamomyces, …) have been identified on winery surfaces but also yeast genera (Buckleyzyma, Curvibasidium, Leucosporidium, …) that have not been before described in the winemaking process. Then, the observed fungal diversity showed evolution over time and dependently according to each of the studied environment. Additionally, some fungal equilibria appears to take place between genera such as Aureobasidium, Candida and Wickerhamomyces. 

Concerning indigenous S. cerevisiae strains, our results demonstrated the potential implantation and persistence of some strains present in the winery environment during 2017 and 2018 vintages and during the alcoholic fermentations. Thus, selected strains of indigenous S. cerevisiae seem to have different physiological characteristics that could explain their potential persistence in winery environments.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Hany Abdo 1, Claudia Rita Catacchio 2, Mario Ventura 2, Julie Laurent 1, Hervé Alexandre 1, Michele Guilloux-Benatier 1, Sandrine Rousseaux 1

1. Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
2. Department of Biology, University of Bari, Bari 70125, Italy

Contact the author

Keywords

Fungal diversity and dynamics, New winery, Fungal resident flora, Saccharomyces cerevisiae

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.