Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 The revision of the delimitation of the AOC “Champagne”

The revision of the delimitation of the AOC “Champagne”

Abstract

The Champagne vine-growing region has played a pioneering role in the delimitation of appellations of origin (AOC). The implementation of the Act of July, 22nd 1927 has led to drawing up lists of vine plots based on the criterion of vine cultivation antecedence.
After that, successive laws, especially the Acts of February 11th 1951 and November 16th 1984, have gradually helped to introduce technical criteria in correcting delimitation process.
The global reviewing of the Champagne appellation area was first opened to secure its boundaries and prevent it from being gradually undermined. Today, we have come very close to full exploitation of land currently classified in AOC (In 2011, the planted surface reaches 34 157 ha, i.e. about 97% of the delimited surface estimated at 35280 ha), which raises the question of spatial extension of the vineyard. However, this extension should not be at the expense of quality and specificity of champagne. This is what is at stake in the global reviewing of the AOC.

Publication date: September 25, 2023

Issue: Terroir 2012

Type: Article

Authors

Édith TOULEMONDE LE NY1*, Marcel BAZIN2
1 Institut National de l’Origine et de la Qualité, site d’Epernay, 43ter rue des Forges, 51200 Epernay
2 professeur émérite à l’université de Reims Champagne-Ardenne

Contact the author

Keywords

Appellation of Controled Origin for Champagne, delimitation process, plot-scale delimitation, core of “terroir”

Tags

IVES Conference Series | Terroir | Terroir 2012

Citation

Related articles…

Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Wine production is a complex multi-step process and the end-product is not easily defined in terms of composition and quality due to the diversity of the raw materials (grapes) and the biological agents (yeast and bacteria) used/present during the fermentation. Furthermore, linking what happens in the vineyard to the wine fermentation and ultimately to characteristics in the wine during ageing

Interaction between commercial mannoproteins and phenolic compounds of two red wines from different Portuguese grape cultivars

The interaction between mannoproteins and wine phenolic compounds is a subject of great interest as some studies show the possible impact in color stability and an improvement in the sensory characteristics namely the reduction of red wine astringency.

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid

TerraClim, an online spatial decision support system for the wine industry

Climate projections for the future suggest favourable conditions for some wine producing regions, but challenging conditions for others. For instance, temperature increases are likely to shift grapevine phenology, ripening and harvest dates, and potentially affect grape quality and yield.