GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A pragmatic modeling approach to assessing vine water status

A pragmatic modeling approach to assessing vine water status

Abstract

Context and purpose of the study – Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species. The interpretation however of this value remains difficult because it is influenced by both soil water content and climatic conditions at the time of measurement. Where soil water content usually follows a decreasing curve during the summer season and climatic conditions follow a more erratic evolution. With predawn leaf water potentials (PLWP) serving as a proxy for soil water content and midday stem water potentials (SWP) reflecting water supply and climatic conditions, it becomes possible to separate the effect of soil water content and climatic conditions on vine water status. Direct use of PLWP measurements on soils with heterogeneous water content is not an option because it is less accurate than SWP measurements and a late-night measurement is not practical. The objectives of this study are (i) to provide a model that separates the effect of soil water content from the effect of climatic conditions on the SWP value and (ii) to standardize the SWP value to a value under predefined reference climatic conditions to better reflect soil water availability, and to compare SWP values under different climatic conditions.

Material and methods – Vine water status was assessed on three soil types in the AOC Saint-Émilion in 2015 and on 5 soil types in the AOC Margaux in 2018. Over the growing season, SWP and PLWP were measured on mature leaves using a pressure chamber.

Results – New models with easily accessible variables can separate the effect of soil water content from the effect of climatic conditions on the SWP values. The measurement of the PLWP is no longer necessary. More research is needed however to understand the changing relationship between SWP and daily maximum temperature over time. SWP values can be brought back to a theoretical value representative of standard climatic conditions. This standardization can be particularly interesting in a context of climate change, where a greater variability of climatic conditions between years is observed. A more precise interpretation allows the winegrower and consultant to more adequately decide on adaptations to implement in both the short- and long term to ensure yields and grape quality.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1,2, Roberta TRIOLO1, David PERNET1, Zhanwu DAI2, Cornelis VAN LEEUWEN2

1 SOVIVINS, Site Montesquieu, 4 allée Isaac Newton, 33650 Martillac, France
EGFV, Bordeaux Sciences Agro, INRA, Univ. of Bordeaux, ISVV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

grapevine water status, stem water potential, predawn leaf water potential, maximum temperature, vapour pressure deficit, evapotranspiration

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Options to replace or reduce the sulphite content in Tannat red wines produced with minimal intervention

Several Uruguayan wineries have begun to produce wines with minimal intervention, to increase the sustainability of their vineyards and wines. These wines are characterized by the minimum intervention in the management of the vineyard, its harvest, vinification, conservation and aging1,2. Sulfur dioxide (SO2) is not used or is used in reduced doses, although chitosan can be substituted or supplemented1. The objective of this research is to evaluate SO2 reduction or replacement options adapted to the production of Tannat red wines with minimal intervention. Vinification of the Tannat grapes with autochthonous yeasts (LN) was carried out during the 2023 vintage.

Terroir or Tūrangawaewae? Expressing sense of place in an emerging New Zealand wine region

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.