GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A pragmatic modeling approach to assessing vine water status

A pragmatic modeling approach to assessing vine water status

Abstract

Context and purpose of the study – Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species. The interpretation however of this value remains difficult because it is influenced by both soil water content and climatic conditions at the time of measurement. Where soil water content usually follows a decreasing curve during the summer season and climatic conditions follow a more erratic evolution. With predawn leaf water potentials (PLWP) serving as a proxy for soil water content and midday stem water potentials (SWP) reflecting water supply and climatic conditions, it becomes possible to separate the effect of soil water content and climatic conditions on vine water status. Direct use of PLWP measurements on soils with heterogeneous water content is not an option because it is less accurate than SWP measurements and a late-night measurement is not practical. The objectives of this study are (i) to provide a model that separates the effect of soil water content from the effect of climatic conditions on the SWP value and (ii) to standardize the SWP value to a value under predefined reference climatic conditions to better reflect soil water availability, and to compare SWP values under different climatic conditions.

Material and methods – Vine water status was assessed on three soil types in the AOC Saint-Émilion in 2015 and on 5 soil types in the AOC Margaux in 2018. Over the growing season, SWP and PLWP were measured on mature leaves using a pressure chamber.

Results – New models with easily accessible variables can separate the effect of soil water content from the effect of climatic conditions on the SWP values. The measurement of the PLWP is no longer necessary. More research is needed however to understand the changing relationship between SWP and daily maximum temperature over time. SWP values can be brought back to a theoretical value representative of standard climatic conditions. This standardization can be particularly interesting in a context of climate change, where a greater variability of climatic conditions between years is observed. A more precise interpretation allows the winegrower and consultant to more adequately decide on adaptations to implement in both the short- and long term to ensure yields and grape quality.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1,2, Roberta TRIOLO1, David PERNET1, Zhanwu DAI2, Cornelis VAN LEEUWEN2

1 SOVIVINS, Site Montesquieu, 4 allée Isaac Newton, 33650 Martillac, France
EGFV, Bordeaux Sciences Agro, INRA, Univ. of Bordeaux, ISVV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

grapevine water status, stem water potential, predawn leaf water potential, maximum temperature, vapour pressure deficit, evapotranspiration

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Mannoprotein extracts from wine lees: characterization and impact on wine properties

This study aims at exploiting an undervalued winemaking by-product, wine yeast lees, by developing efficient and food-grade methods for the extraction of yeast glycoproteins. These extracts were then supplemented to wine and their impact on wine properties assessed.

Hexose efflux from the peeled grape berry

After the onset of grape berry ripening, phloem unloading follows an apoplasmic route into the mesocarp tissue. In the apoplast, most of the unloaded sucrose is cleaved by cell wall invertases

Grapevine responses to red blotch disease – a structural-functional perspective of symptomatology development and fruit quality

Red Blotch disease caused by Grapevine red blotch-associated virus (GRBaV) is a severe concern to grape growers and winemakers in major grape-growing regions worldwide. One key aspect of all viruses, including Red Blotch, is their intimate association with cell components and anomalous structures following infection. Therefore, the objective of this study was to analyze symptomatology, vine function, fruit quality and ultrastructure of various tissues and document the relationship of ultrastructural cytopathology with the GRBaV infection in Pinot Noir and Merlot employing various microscopy techniques.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Comparative QTL mapping of phenology traits in three cross populations of grapevine

Long-term studies on grapevine phenology have clearly demonstrated that global warming is affecting phenological events, leading to an anticipation in their timing, and negatively impacting grape yield and berry quality. Therefore, dissecting the genetic determinants involved in the plant regulation of the phenological stages of budburst, flowering, veraison and ripening can improve our knowledge of the underlying mechanisms and support plant breeding programs and the advancement of vineyard management strategies.
We report here the results of a QTL mapping experiment conducted on three segregating populations obtained from the crossing of ‘Cabernet Sauvignon’ and ‘Corvina’, ‘Corvina’ and the hybrid ‘Solaris’ and ‘Rhine Riesling’ and ‘Cabernet Sauvignon’.