GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A pragmatic modeling approach to assessing vine water status

A pragmatic modeling approach to assessing vine water status

Abstract

Context and purpose of the study – Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species. The interpretation however of this value remains difficult because it is influenced by both soil water content and climatic conditions at the time of measurement. Where soil water content usually follows a decreasing curve during the summer season and climatic conditions follow a more erratic evolution. With predawn leaf water potentials (PLWP) serving as a proxy for soil water content and midday stem water potentials (SWP) reflecting water supply and climatic conditions, it becomes possible to separate the effect of soil water content and climatic conditions on vine water status. Direct use of PLWP measurements on soils with heterogeneous water content is not an option because it is less accurate than SWP measurements and a late-night measurement is not practical. The objectives of this study are (i) to provide a model that separates the effect of soil water content from the effect of climatic conditions on the SWP value and (ii) to standardize the SWP value to a value under predefined reference climatic conditions to better reflect soil water availability, and to compare SWP values under different climatic conditions.

Material and methods – Vine water status was assessed on three soil types in the AOC Saint-Émilion in 2015 and on 5 soil types in the AOC Margaux in 2018. Over the growing season, SWP and PLWP were measured on mature leaves using a pressure chamber.

Results – New models with easily accessible variables can separate the effect of soil water content from the effect of climatic conditions on the SWP values. The measurement of the PLWP is no longer necessary. More research is needed however to understand the changing relationship between SWP and daily maximum temperature over time. SWP values can be brought back to a theoretical value representative of standard climatic conditions. This standardization can be particularly interesting in a context of climate change, where a greater variability of climatic conditions between years is observed. A more precise interpretation allows the winegrower and consultant to more adequately decide on adaptations to implement in both the short- and long term to ensure yields and grape quality.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1,2, Roberta TRIOLO1, David PERNET1, Zhanwu DAI2, Cornelis VAN LEEUWEN2

1 SOVIVINS, Site Montesquieu, 4 allée Isaac Newton, 33650 Martillac, France
EGFV, Bordeaux Sciences Agro, INRA, Univ. of Bordeaux, ISVV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

grapevine water status, stem water potential, predawn leaf water potential, maximum temperature, vapour pressure deficit, evapotranspiration

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Innovative approach to energy efficiency benchmarking in the wine sector

The wine industry, a key sector for the European Union’s economy, exhibits significant energy consumption, amounting to approximately 1,750 million kWh annually within this geographic context, with major contributions from Italy, France, Spain, and Portugal (Fuentes Pila et al., 2015).

Un jour, l’AOD (Appellation d’Origine viticole Durable), fusion de l’origine et de la durabilité

The evolution of wine quality issues is historically expressed by the passage from wine quality (what is a wine?) to wine quality (what is a good wine?). Perhaps the next question could be: what is a good sustainable wine? To contribute to reflection on this theme, it may be worthwhile to undertake an exercise in prospective fiction, which we have identified in the hypothesis of the AOD, the “appellation d’origine durable”, a scenario we will develop in the light of developments in the wine industry and the regulation on geographical indications.

Characterization of vine performance using remote sensing tools

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.

What does the concept of natural wine evoke in the minds and senses of tasters? Effect of the level of expertise.

In this video recording of the IVES science meeting 2025, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne-Franche-Comté, Dijon, France) and María-Pilar Sáenz-Navajas (Instituto de Ciencias de la Vid y el Vino (ICVV) (CSIC-UR-GR), La Rioja, Spain) speak about the concept of natural wine. This presentation is based on an original article accessible for free on OENO One.

Influence of inactive dry yeast treatments during grape ripening on postharvest berry skin texture parameters and phenolic compounds extractability

Inactive dry yeast treatments in the vineyard are a tool used with the aim to improve the concentration and quality of secondary metabolites in grapes, leading to a better differentiation of the wines made from grapes differently treated. In this work, a foliar spraying treatment with yeast derivatives specifically designed to be used with the patent pending application technology of Lallemand Inc. Canada (LalVigne® Mature, Lallemand Inc., Montreal, Canada) was tested on Vitis vinifera L. cv. Barbera and Nebbiolo black winegrapes. The aim was to evaluate the effect of this treatment on the phenolic compounds accumulation, the skin physical-mechanical properties and the related phenolic extractability. Prior to analysis, the berries were sorted by flotation in order to evaluate their distribution by density class, and to determine the skin texture parameters of berries with different sugar contents, thus understanding also the ripening effect.