GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A pragmatic modeling approach to assessing vine water status

A pragmatic modeling approach to assessing vine water status

Abstract

Context and purpose of the study – Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species. The interpretation however of this value remains difficult because it is influenced by both soil water content and climatic conditions at the time of measurement. Where soil water content usually follows a decreasing curve during the summer season and climatic conditions follow a more erratic evolution. With predawn leaf water potentials (PLWP) serving as a proxy for soil water content and midday stem water potentials (SWP) reflecting water supply and climatic conditions, it becomes possible to separate the effect of soil water content and climatic conditions on vine water status. Direct use of PLWP measurements on soils with heterogeneous water content is not an option because it is less accurate than SWP measurements and a late-night measurement is not practical. The objectives of this study are (i) to provide a model that separates the effect of soil water content from the effect of climatic conditions on the SWP value and (ii) to standardize the SWP value to a value under predefined reference climatic conditions to better reflect soil water availability, and to compare SWP values under different climatic conditions.

Material and methods – Vine water status was assessed on three soil types in the AOC Saint-Émilion in 2015 and on 5 soil types in the AOC Margaux in 2018. Over the growing season, SWP and PLWP were measured on mature leaves using a pressure chamber.

Results – New models with easily accessible variables can separate the effect of soil water content from the effect of climatic conditions on the SWP values. The measurement of the PLWP is no longer necessary. More research is needed however to understand the changing relationship between SWP and daily maximum temperature over time. SWP values can be brought back to a theoretical value representative of standard climatic conditions. This standardization can be particularly interesting in a context of climate change, where a greater variability of climatic conditions between years is observed. A more precise interpretation allows the winegrower and consultant to more adequately decide on adaptations to implement in both the short- and long term to ensure yields and grape quality.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1,2, Roberta TRIOLO1, David PERNET1, Zhanwu DAI2, Cornelis VAN LEEUWEN2

1 SOVIVINS, Site Montesquieu, 4 allée Isaac Newton, 33650 Martillac, France
EGFV, Bordeaux Sciences Agro, INRA, Univ. of Bordeaux, ISVV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

grapevine water status, stem water potential, predawn leaf water potential, maximum temperature, vapour pressure deficit, evapotranspiration

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Characterization of free and glycosidically bound simple phenols in hybrid grape varieties using liquid chromatography coupled to high resolution mass (q-orbitrap)

Vitis vinifera is one of the most diffused grapevines over the word and it is the raw material for high quality wines production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generating much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids are not well defined. Different studies revealed that wine consumption has health effects due to its high content of antioxidants, as phenolic compounds. In particular, simple phenols are appreciated not only for their physiological health benefits, including antioxidant, anti-inflammatory and cardioprotective effects, but also because they affect wines organoleptic profile and have a significant role in defining their nutritional characteristics.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-

Early likovrisi: the new white very early table grape seedless and resistant variety

This paper presents is the create, the study and ampelographic description the new «Early Likovrisi», that was created (2014) in Greece by Pantelis Zamanidis.

Délimitation des terroirs dans les A.O. Rueda et Toro (Castilla y León-Espagne)

La délimitation et la caractérisation des zones viticoles posent en Espagne des problèmes spécifiques non seulement dus aux caractéristiques propres au territoire mais aussi à la dimension, la distribution et l’indice d’occupation viticole dans les appellations d’origine.