GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A pragmatic modeling approach to assessing vine water status

A pragmatic modeling approach to assessing vine water status

Abstract

Context and purpose of the study – Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species. The interpretation however of this value remains difficult because it is influenced by both soil water content and climatic conditions at the time of measurement. Where soil water content usually follows a decreasing curve during the summer season and climatic conditions follow a more erratic evolution. With predawn leaf water potentials (PLWP) serving as a proxy for soil water content and midday stem water potentials (SWP) reflecting water supply and climatic conditions, it becomes possible to separate the effect of soil water content and climatic conditions on vine water status. Direct use of PLWP measurements on soils with heterogeneous water content is not an option because it is less accurate than SWP measurements and a late-night measurement is not practical. The objectives of this study are (i) to provide a model that separates the effect of soil water content from the effect of climatic conditions on the SWP value and (ii) to standardize the SWP value to a value under predefined reference climatic conditions to better reflect soil water availability, and to compare SWP values under different climatic conditions.

Material and methods – Vine water status was assessed on three soil types in the AOC Saint-Émilion in 2015 and on 5 soil types in the AOC Margaux in 2018. Over the growing season, SWP and PLWP were measured on mature leaves using a pressure chamber.

Results – New models with easily accessible variables can separate the effect of soil water content from the effect of climatic conditions on the SWP values. The measurement of the PLWP is no longer necessary. More research is needed however to understand the changing relationship between SWP and daily maximum temperature over time. SWP values can be brought back to a theoretical value representative of standard climatic conditions. This standardization can be particularly interesting in a context of climate change, where a greater variability of climatic conditions between years is observed. A more precise interpretation allows the winegrower and consultant to more adequately decide on adaptations to implement in both the short- and long term to ensure yields and grape quality.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Bruno SUTER1,2, Roberta TRIOLO1, David PERNET1, Zhanwu DAI2, Cornelis VAN LEEUWEN2

1 SOVIVINS, Site Montesquieu, 4 allée Isaac Newton, 33650 Martillac, France
EGFV, Bordeaux Sciences Agro, INRA, Univ. of Bordeaux, ISVV, 33882 Villenave d’Ornon, France

Contact the author

Keywords

grapevine water status, stem water potential, predawn leaf water potential, maximum temperature, vapour pressure deficit, evapotranspiration

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

The objective of these work was to demonstrate that toasted fragments of pruning vine-shoots added to the wines after fermentation provide them with differentiated aromatic notes and improve their quality.

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

The estimation of the clear-sky effective PAR resources in a mountain area

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.