OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Abstract

SO2 is used during winemaking for its anti-oxidative and anti-microbial properties. A high SO2 concentration in the wine has negative impacts by hiding wine aromas and delaying malolactic fermentation. SO2 concentration is also a source of health concerns and is therefore legally regulated. During the alcoholic fermentation SO2 can be produced or consumed by the yeast Saccharomyces cerevisiae with a high variability depending on the strain that accomplish the fermentation. The selection of industrial strains leaving less SO2 at the end of fermentation is therefore of great interest. 

In this study we implemented a QTL (Quantitative Trait Loci) mapping program to identify genetic factors that impact SO2 production by yeast during fermentation. This approach requires the study of a large progeny in segregation that must be characterized genetically and phenotypically. The establishment of a statistical link between genotype and phenotype allows the localization of QTLs that have an impact on the characters. 

Small-scale fermentations in 10 ml screw cap vessels coupled with robotized enzymatic allowed us to measure SO2 profile of several hundred individuals from two progenies. These two progenies were also genotyped by whole genome sequencing providing saturated genetic maps of thousands of markers. This experimental design led us to the identification of nine QTLs controlling SO2. Four of them present in MCH1, STR2 and SSU1 genes were molecularly validated. These alleles also show a pleiotropic effect with link between the production of SO2 and acetic acid. In the future, these new alleles can be used in cross breeding programs for the improvement of industrial strains.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Emilien Peltier (1,2), Maria Martí Raga (1,3), Miguel Roncoroni (4), Vladimir Jiranek (5), Yves Gibon (4), Philippe Marullo (1,2)

(1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(2) Biolaffort, Bordeaux, France
(3) Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Spain
(4) Wine Science Programme, University of Auckland, New Zealand
(5) Department of Wine and Food Science, University of Adelaide, Australia
(6) INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, Villenave d’Ornon, France

Contact the author

Keywords

Yeast, QTL mapping, SO2 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Big data analysis of pesticides from the vine to the winery

Of biocontrol products and resistant grape varieties, synthetic pesticides are still widely used to control fungal diseases and protect vines from potential damage caused by pests. The use of pesticides is strictly regulated, and their use can sometimes lead to transfer from the grapes to the must and then into the wine. The study of pesticide residues in grapes and wines is commonly carried out by wine producers in order, among other things, to optimize treatment routes, check that products comply with regulations, and ultimately guarantee the food safety of the wine.

Monitoring gas-phase CO2 in the headspace of champagne glasses through diode laser spectrometry

During Champagne or sparkling wine tasting, gas-phase CO2 and volatile organic compounds invade the headspace above glasses [1], thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception [2]. Monitoring as accurately as possible the level of gas-phase CO2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO2 and a collection of various tasting parameters.

Acceptance of fungus-resistant grape varieties from the perspective of producers and consumers in Germany

Fungus-resistant grape varieties (frgv) are an important field of research in viticulture, as they represent a way of reducing the use of copper-containing pesticides and thus minimising the environmental impact. The literature suggests that resistant grape varieties are a promising solution to the problem of using copper-containing pesticides in viticulture and that their quality has improved in recent years. However, there are still challenges in the acceptance and dissemination of FRGV by wine producers and consumers.

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Correlation between stable isotopic composition of the fungus aspergillus niger and its growth substrate and the extracted chitin

Wine is one of the most consumed and appreciated beverages in the world. Due to the growing attention paid to consumer health, there is a continuous search for sustainable alternatives to common additives (such as sulfur dioxide) used to preserve wine. An example is represented by chitosan, the main derivative of chitin, approved for the treatment of must and wine since 2009 by the “international organization of vine and wine” (OIV/OENO 338a/2009) and by the european commission (EC Reg. No. 606/2009).