OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Abstract

SO2 is used during winemaking for its anti-oxidative and anti-microbial properties. A high SO2 concentration in the wine has negative impacts by hiding wine aromas and delaying malolactic fermentation. SO2 concentration is also a source of health concerns and is therefore legally regulated. During the alcoholic fermentation SO2 can be produced or consumed by the yeast Saccharomyces cerevisiae with a high variability depending on the strain that accomplish the fermentation. The selection of industrial strains leaving less SO2 at the end of fermentation is therefore of great interest. 

In this study we implemented a QTL (Quantitative Trait Loci) mapping program to identify genetic factors that impact SO2 production by yeast during fermentation. This approach requires the study of a large progeny in segregation that must be characterized genetically and phenotypically. The establishment of a statistical link between genotype and phenotype allows the localization of QTLs that have an impact on the characters. 

Small-scale fermentations in 10 ml screw cap vessels coupled with robotized enzymatic allowed us to measure SO2 profile of several hundred individuals from two progenies. These two progenies were also genotyped by whole genome sequencing providing saturated genetic maps of thousands of markers. This experimental design led us to the identification of nine QTLs controlling SO2. Four of them present in MCH1, STR2 and SSU1 genes were molecularly validated. These alleles also show a pleiotropic effect with link between the production of SO2 and acetic acid. In the future, these new alleles can be used in cross breeding programs for the improvement of industrial strains.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Emilien Peltier (1,2), Maria Martí Raga (1,3), Miguel Roncoroni (4), Vladimir Jiranek (5), Yves Gibon (4), Philippe Marullo (1,2)

(1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(2) Biolaffort, Bordeaux, France
(3) Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Spain
(4) Wine Science Programme, University of Auckland, New Zealand
(5) Department of Wine and Food Science, University of Adelaide, Australia
(6) INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, Villenave d’Ornon, France

Contact the author

Keywords

Yeast, QTL mapping, SO2 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

FUNGAL DIVERSITY AND DYNAMICS IN CHAMPAGNE VINEYARDS: FROM VINE TO WINE

Champagne is a well-known wine region in Northern France with distinct terroirs and three main grape varieties. As for any vineyard, wine quality is highly linked to the microbiological characteristics of the raw materials. However, Champagne grape microbiota, especially its fungal component, has yet to be fully characterized. Our study focused on describing this mycobiota, from vine to small scale model wine, for the two main Champagne grape varieties, Pinot Noir and Meunier, using complementary cultural and omics approaches.

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

A research agenda for terroir: an empirical, international expert study

Aim: Terroir is a French concept relating the qualities and quality of agricultural products to their physical and socio-cultural place of origin. It is increasingly used by business and policymakers as a marketing technique to provide economic benefits (e.g. Lenglet, 2014; Wine Australia, 2015), and to potentially preserve cultural heritage (e.g. Bauer, 2009) and the environment (e.g. Bowen, 2010)