OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Abstract

SO2 is used during winemaking for its anti-oxidative and anti-microbial properties. A high SO2 concentration in the wine has negative impacts by hiding wine aromas and delaying malolactic fermentation. SO2 concentration is also a source of health concerns and is therefore legally regulated. During the alcoholic fermentation SO2 can be produced or consumed by the yeast Saccharomyces cerevisiae with a high variability depending on the strain that accomplish the fermentation. The selection of industrial strains leaving less SO2 at the end of fermentation is therefore of great interest. 

In this study we implemented a QTL (Quantitative Trait Loci) mapping program to identify genetic factors that impact SO2 production by yeast during fermentation. This approach requires the study of a large progeny in segregation that must be characterized genetically and phenotypically. The establishment of a statistical link between genotype and phenotype allows the localization of QTLs that have an impact on the characters. 

Small-scale fermentations in 10 ml screw cap vessels coupled with robotized enzymatic allowed us to measure SO2 profile of several hundred individuals from two progenies. These two progenies were also genotyped by whole genome sequencing providing saturated genetic maps of thousands of markers. This experimental design led us to the identification of nine QTLs controlling SO2. Four of them present in MCH1, STR2 and SSU1 genes were molecularly validated. These alleles also show a pleiotropic effect with link between the production of SO2 and acetic acid. In the future, these new alleles can be used in cross breeding programs for the improvement of industrial strains.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Emilien Peltier (1,2), Maria Martí Raga (1,3), Miguel Roncoroni (4), Vladimir Jiranek (5), Yves Gibon (4), Philippe Marullo (1,2)

(1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(2) Biolaffort, Bordeaux, France
(3) Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Spain
(4) Wine Science Programme, University of Auckland, New Zealand
(5) Department of Wine and Food Science, University of Adelaide, Australia
(6) INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, Villenave d’Ornon, France

Contact the author

Keywords

Yeast, QTL mapping, SO2 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.

Root water uptake patterns in rootstock-scion interactions influence grape water use strategies in a Mediterranean vineyard

Increasing drought is the most important impact of the ongoing climate change in the Mediterranean Basin, and it is predicted to result in productivity decreases and changes in grape quality.

Influence of light exclusion on anthocyanin composition in ‘Cabernet sauvignon’

The aim of this study was to determine how artificial shading influenced berry development and anthocyanin accumulation in ‘Cabernet sauvignon’. Opaque polypropylene boxes were applied to grape bunches over three different developmental stages.