OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Abstract

SO2 is used during winemaking for its anti-oxidative and anti-microbial properties. A high SO2 concentration in the wine has negative impacts by hiding wine aromas and delaying malolactic fermentation. SO2 concentration is also a source of health concerns and is therefore legally regulated. During the alcoholic fermentation SO2 can be produced or consumed by the yeast Saccharomyces cerevisiae with a high variability depending on the strain that accomplish the fermentation. The selection of industrial strains leaving less SO2 at the end of fermentation is therefore of great interest. 

In this study we implemented a QTL (Quantitative Trait Loci) mapping program to identify genetic factors that impact SO2 production by yeast during fermentation. This approach requires the study of a large progeny in segregation that must be characterized genetically and phenotypically. The establishment of a statistical link between genotype and phenotype allows the localization of QTLs that have an impact on the characters. 

Small-scale fermentations in 10 ml screw cap vessels coupled with robotized enzymatic allowed us to measure SO2 profile of several hundred individuals from two progenies. These two progenies were also genotyped by whole genome sequencing providing saturated genetic maps of thousands of markers. This experimental design led us to the identification of nine QTLs controlling SO2. Four of them present in MCH1, STR2 and SSU1 genes were molecularly validated. These alleles also show a pleiotropic effect with link between the production of SO2 and acetic acid. In the future, these new alleles can be used in cross breeding programs for the improvement of industrial strains.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Emilien Peltier (1,2), Maria Martí Raga (1,3), Miguel Roncoroni (4), Vladimir Jiranek (5), Yves Gibon (4), Philippe Marullo (1,2)

(1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(2) Biolaffort, Bordeaux, France
(3) Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Spain
(4) Wine Science Programme, University of Auckland, New Zealand
(5) Department of Wine and Food Science, University of Adelaide, Australia
(6) INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, Villenave d’Ornon, France

Contact the author

Keywords

Yeast, QTL mapping, SO2 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Gestión de la mitigación por las empresas vitivinícolas: combinar sostenibilidad y rentabilidad

The transition to a decarbonized economy requires companies to adopt mitigation measures. The wine sector is one of the most affected by climate change and, therefore, interested in its mitigation. The question is how this process develops. To address this, we build on a previous study [1], which identified different types of Spanish wineries based on their sustainability approach.

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.

Membrane contactor: a sustainable technology to remove dissolved oxygen from wine and preserve wine aroma

Oxygen management in wine is one of the most significant challenging issues for winemakers.

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.

Adaptation et expression de l’encépagement et mode de conduite en différents terroirs de la région du Douro/vin de Porto

Ce travail a pour objet l’analyse des résultats agronomiques obtenus sur trois unités expérimentales du Centre d’Etudes Vitivinicoles du Douro (CEVDouro), localisées dans des écosystèmes différenciés de la Région du Douro/Vin de Porto, à différentes altitudes (130, 330 et 520 mètres) et à des expositions diversifiées (SE, N et W).