OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Genetic causes of SO2 consumption in Saccharomyces cerevisiae

Abstract

SO2 is used during winemaking for its anti-oxidative and anti-microbial properties. A high SO2 concentration in the wine has negative impacts by hiding wine aromas and delaying malolactic fermentation. SO2 concentration is also a source of health concerns and is therefore legally regulated. During the alcoholic fermentation SO2 can be produced or consumed by the yeast Saccharomyces cerevisiae with a high variability depending on the strain that accomplish the fermentation. The selection of industrial strains leaving less SO2 at the end of fermentation is therefore of great interest. 

In this study we implemented a QTL (Quantitative Trait Loci) mapping program to identify genetic factors that impact SO2 production by yeast during fermentation. This approach requires the study of a large progeny in segregation that must be characterized genetically and phenotypically. The establishment of a statistical link between genotype and phenotype allows the localization of QTLs that have an impact on the characters. 

Small-scale fermentations in 10 ml screw cap vessels coupled with robotized enzymatic allowed us to measure SO2 profile of several hundred individuals from two progenies. These two progenies were also genotyped by whole genome sequencing providing saturated genetic maps of thousands of markers. This experimental design led us to the identification of nine QTLs controlling SO2. Four of them present in MCH1, STR2 and SSU1 genes were molecularly validated. These alleles also show a pleiotropic effect with link between the production of SO2 and acetic acid. In the future, these new alleles can be used in cross breeding programs for the improvement of industrial strains.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Emilien Peltier (1,2), Maria Martí Raga (1,3), Miguel Roncoroni (4), Vladimir Jiranek (5), Yves Gibon (4), Philippe Marullo (1,2)

(1) Unité de recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Bordeaux INP, F33882 Villenave d’Ornon France
(2) Biolaffort, Bordeaux, France
(3) Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Spain
(4) Wine Science Programme, University of Auckland, New Zealand
(5) Department of Wine and Food Science, University of Adelaide, Australia
(6) INRA, University of Bordeaux, UMR 1332 Fruit Biology and Pathology, Villenave d’Ornon, France

Contact the author

Keywords

Yeast, QTL mapping, SO2 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Dynamics of Saccharomyces cerevisiae population in spontaneous fermentations from Granxa D’Outeiro terroir (DOP Ribeiro, NW Spain)

Granxa D’Outeiro is a recovered ancient vineyard located in the heart of DOP Ribeiro, where traditional white grapevine varieties are growing under sustainable management. Spontaneous fermentations using grape must from Treixadura, Albariño, Lado, Godello, and Loureira varieties were carried out at experimental winery of Evega. Yeasts were isolated from must and at different stages of fermentation. Those colonies belonging to Saccharomyces cerevisiae were characterized at strain level by mDNA-RFLPs.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

Does bioprotection by adding yeasts present antioxydant properties?

AIM: The bioprotection by adding yeasts is an emerging sulfur dioxide alternative. Sulfur dioxide is a chemical adjuvant used for its antiseptic, antioxidasic and antioxidant properties. Faced with the societal demand (Pérès et al., 2018) and considering the proven human risks associated with the total doses of sulfur dioxide (SO2) present in food requirements (García‐Gavín et al., 2012), the reduction of this chemical input is undeniable.