Terroir 2020 banner
IVES 9 IVES Conference Series 9 Viticulture and climate: from global to local

Viticulture and climate: from global to local

Abstract

Aims: This review aims to (1) present the multiple interests of studying and depicting and climate spatial variability for vitivinicultural terroirs study; (2) explain the factors that affect climate spatial variability according to the spatial scale considered and (3) provide guidelines for climate zoning considering challenges linked to each methodology considered.

Methods and Results: Scientific contributions of the 12 Terroir Conferences proceedings since 1996 have been reviewed together with Vitis-Vea, Oeno One, ASEV, ScienceDirect, SpringerLink and Wiley Online Library data bases with various keywords combination of “Climate”, “Spatial analysis”, “Wine”, “Viticulture”, “Area”, “Scale”, “Terroir” and “Zoning”, including English, Italian and Spanish languages. This literature review led to the classification of climate spatial analysis related studies according to the spatial extent, scale, source of data, spatialization method and indices used to depict the spatial structure of climate. To illustrate the scale issue for climate spatial analysis of wine growing terroirs, a comparison of spatial structure of climate depicted by either large scale data (Worldclim v2.0and CRU4.2TS), point data (weather stations) and spatial interpolation of local weather stations was performed in Bordeaux (2001-2005 period) wine region. It shows the limitations of coarse resolution (macroclimate scale) data to depict mesoscale data.

Conclusions: 

The climate spatial variability of wine producing regions have been widely documented, yet not exhaustively. However, climate indices and period are not standardized which makes it difficult to compare the climate of terroirs based on the existing literature. Analysing spatial structure might lead to different conclusions according to the source of the data, and thus special care should be provided to the methods, scale and uncertainties associated to spatial data.

Significance and Impact of the Study: This study provides in a nutshell an overview of climate analysis for terroir studies that could be useful for students, winegrowers and researchers interested in climate spatial analysis.

DOI:

Publication date: March 16, 2021

Issue: Terroir 2020

Type: Video

Authors

Benjamin Bois1,2*

1Centre de Recherches de Climatologie, UMR 6282 CNRS/UB Biogéosciences, Univ. Bourgogne-Franche-Comté, 6 bd Gabriel 21000 Dijon. France
2IUVV, Univ. Bourgogne-Franche-Comté, 1 rue Claude Ladrey, 21000 DIJON, France

Contact the author

Keywords

Climatespatial analysis, spatial scale, viticulture, terroir

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

A NEW STRATEGY AND METHODOLOGY FOR THE CHARACTERIZATION OF POLYPHENOLS IN FINING PRECIPITATE

Polyphenols are secondary metabolite widely distributed in plant kingdom such as in fruits, in grapes and in wine. During the winemaking process, polyphenols are extract from the skin and seed of the berries. Fining is an important winemaking step just before bottling which has an impact on wine stabilization and clarification. Most the time, fining agent are animal or vegetal protein while some of them can be synthetic polymer like PVPP or natural origin like bentonite.

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition


In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest.

Grafting, the most sustainable way to control phylloxera over 150 years

Just over 150 years ago, phylloxera, daktulosphaera vitifoliae, was introduced to europe, and particularly france, from north america via imports of american vitis plants. This aphid, with its complex biology and life cycle, has spread rapidly to most vineyards, causing rapid and lethal decline of v. Vinifera vines due to the primary and secondary damage it causes to the roots. In response to this pest, and given the economic importance of the french wine sector, professional representatives organised into ‘agricultural societies’, scientists and public authorities rallied together to identify the exact causes, seek solutions and try to stem the serious socio-economic crisis that ensued.

Moscatel vine-shoot extracts as grapevine biostimulant to increase the varietal aroma of Airén wines

There is a growing interest in the exploitation of vine-shoots waste, since they are often left or burned. Sánchez-Gómez et al. [1] have shown that vines-shoots aqueous extracts have significant contents of bioactive compounds, among which several polyphenols and volatiles are highlighted. Recent studied had demonstrated that the chemical composition of vine-shoots is enhanced when vine-shoots are toasted
[2,3]. The application of vegetable products in the vineyards has led to significant changes towards a more “Sustainable Viticulture”. An innovative foliar application for Airén vine-shoot extracts have been carried out to the vineyard. It has been shown that they act as grape biostimulants, improving certain wine quality characteristics [4].

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).