GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Abstract

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:

• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.

1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)

2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)

3/ Warrant transparency and evaluation of all operations: (traceability of the production line, complete analyses of the products, use of secure scientific methods, wide communication)

• Specific choices made by the vine grower, the winemaker and the consumer (individual; company; public or private organizations) respecting the basic rules.

A precise example is taken in North – East of Italy where activities were conducted in a farm located both in the hillside in the well-known ‘terroir’ of Prosecco area, and in the flat area, and differently managed according to the location.

It has been verified with successful application, that this ” Charter of Direct Sustainability BIO – MetaEthics” can be used anywhere, in conventional or otherwise certified companies (for example: “Organic”, “VIVA”, …), in which the producers want to “certify” their particular characteristics such as:

1-the use of original, innovative, sustainable technics referring to 4.1C guide:

1.1-training systems and winter pruning systems such as: “Prosecco of Prosecco 4.1 C”, “Prosecco of Cartizze

4.1C”, “Prosecco-Latnik 4.1C”, which, among other things, allow not to be damaged by wild boar, roe deer, deer, birds, … and this without altering natural life;

1.2-management of the soil, of the grass, of the plant for example: 1.2.1-completely replacing chemical weeding with perennial grasses without mowing or mowing the grass, but only when and where objectively

“4.1C” this cannot be avoided, 1.2-2-eliminating or drastically reducing interventions on the ground and on the plant such as shoot positioning, topping and edging, for example in companies certified by known Italian certifications that do not include these aspects, 1.2.3-setting a phytosanitary defense applicable anywhere, also, in populated areas;

2-valuing and further personalizing the existing certifications, for example by certifying “GiESCO BIO -MetaEthics” insisting on the use of resistant varieties and the absence of copper residues in companies already certified “Organic”.

Obviously, the “Charter of Direct Sustainability BIO – MetaEthics” of the GiESCO fits the “Direct 4.1C Certification” and also the relative “Direct Guarantee 4.1C”: technical, economic, environmental, social, existential, ethical.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1, Alain CARBONNEAU2

1 Conegliano Campus 5.1C
2 Montpellier SupAgro, IHEV, Montpellier (France)

Contact the author

Keywords

sustainability 4.1CC, new direct certification 4.1CC

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Contaminations croisées avec les produits phytosanitaires dans les vins bio. Sources potentielles et mesures de prévention.

Organic wines, although resulting from a production method based on the non-use of synthetic phytosanitary products, are not always free of residues. These residues can result from cross-contamination during production in the field or in the cellar, during the production or aging of the wine. In recent years, with the improvement of analysis techniques, a molecule, phosphonic acid, the main metabolite of fosetyl-al (banned in organic farming) is regularly quantified in organic wines and its origin is not clearly identified.

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

Sensory impact of acetaldehyde addition in Syrah red wines

Acetaldehyde is a volatile carbonyl compound synthetized by yeast during alcoholic fermentation, but it can also be formed by oxidation of ethanol during wine aging [1]. At low concentration, it enhances the fruity aroma, however, at higher levels, it can generate the appearance of notes of bruised and rotten apple [2]. From a chemical point of view, acetaldehyde is a reactive low-

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.