GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Abstract

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:

• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.

1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)

2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)

3/ Warrant transparency and evaluation of all operations: (traceability of the production line, complete analyses of the products, use of secure scientific methods, wide communication)

• Specific choices made by the vine grower, the winemaker and the consumer (individual; company; public or private organizations) respecting the basic rules.

A precise example is taken in North – East of Italy where activities were conducted in a farm located both in the hillside in the well-known ‘terroir’ of Prosecco area, and in the flat area, and differently managed according to the location.

It has been verified with successful application, that this ” Charter of Direct Sustainability BIO – MetaEthics” can be used anywhere, in conventional or otherwise certified companies (for example: “Organic”, “VIVA”, …), in which the producers want to “certify” their particular characteristics such as:

1-the use of original, innovative, sustainable technics referring to 4.1C guide:

1.1-training systems and winter pruning systems such as: “Prosecco of Prosecco 4.1 C”, “Prosecco of Cartizze

4.1C”, “Prosecco-Latnik 4.1C”, which, among other things, allow not to be damaged by wild boar, roe deer, deer, birds, … and this without altering natural life;

1.2-management of the soil, of the grass, of the plant for example: 1.2.1-completely replacing chemical weeding with perennial grasses without mowing or mowing the grass, but only when and where objectively

“4.1C” this cannot be avoided, 1.2-2-eliminating or drastically reducing interventions on the ground and on the plant such as shoot positioning, topping and edging, for example in companies certified by known Italian certifications that do not include these aspects, 1.2.3-setting a phytosanitary defense applicable anywhere, also, in populated areas;

2-valuing and further personalizing the existing certifications, for example by certifying “GiESCO BIO -MetaEthics” insisting on the use of resistant varieties and the absence of copper residues in companies already certified “Organic”.

Obviously, the “Charter of Direct Sustainability BIO – MetaEthics” of the GiESCO fits the “Direct 4.1C Certification” and also the relative “Direct Guarantee 4.1C”: technical, economic, environmental, social, existential, ethical.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1, Alain CARBONNEAU2

1 Conegliano Campus 5.1C
2 Montpellier SupAgro, IHEV, Montpellier (France)

Contact the author

Keywords

sustainability 4.1CC, new direct certification 4.1CC

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

New technologies to characterize spatial variability in viticulture

Measurements of parameters spatialy positionned, with on line sensors mounted on classical machinery or airborne imagery is no more a problem in viticulture. In a short time, high resolution data dedicated to the assessment of the vine characteristics, the soil, the harvest, etc. will become a reality.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.

Estudio de fertilidad en variedades blancas en Castilla-la Mancha

La adaptación de nuevas variedades a zonas de cultivo fuera de su área de origen presenta múltiples interrogantes. En Castilla-La Mancha se está produciendo en los últimos años una gran inquietud por la diversificación y la reconversión de variedades.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).