GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Application of GiESCO “bio-metaethics” charter in practice: the “direct” involvement of vine grower, winemaker, society

Abstract

On the basis of a direct agreement between the GiESCO and the vine grower, the winemaker and the consumers (individual; company; public or private organizations), the communication on the content of the charter can be done as follows:

• Commitment to respect the basic rules of the GiESCO “BIO – MetaEthics” charter.

1/ Put Mankind in the depth of all concerns in a universal context: (grower, consumer, citizen, work valuing, education, security)

2/ Insure minimum impact on environment by optimizing cultivation technics: (maximum of natural biodegradable products, friendly practices, short channels, renewable energies, terroir sustainability)

3/ Warrant transparency and evaluation of all operations: (traceability of the production line, complete analyses of the products, use of secure scientific methods, wide communication)

• Specific choices made by the vine grower, the winemaker and the consumer (individual; company; public or private organizations) respecting the basic rules.

A precise example is taken in North – East of Italy where activities were conducted in a farm located both in the hillside in the well-known ‘terroir’ of Prosecco area, and in the flat area, and differently managed according to the location.

It has been verified with successful application, that this ” Charter of Direct Sustainability BIO – MetaEthics” can be used anywhere, in conventional or otherwise certified companies (for example: “Organic”, “VIVA”, …), in which the producers want to “certify” their particular characteristics such as:

1-the use of original, innovative, sustainable technics referring to 4.1C guide:

1.1-training systems and winter pruning systems such as: “Prosecco of Prosecco 4.1 C”, “Prosecco of Cartizze

4.1C”, “Prosecco-Latnik 4.1C”, which, among other things, allow not to be damaged by wild boar, roe deer, deer, birds, … and this without altering natural life;

1.2-management of the soil, of the grass, of the plant for example: 1.2.1-completely replacing chemical weeding with perennial grasses without mowing or mowing the grass, but only when and where objectively

“4.1C” this cannot be avoided, 1.2-2-eliminating or drastically reducing interventions on the ground and on the plant such as shoot positioning, topping and edging, for example in companies certified by known Italian certifications that do not include these aspects, 1.2.3-setting a phytosanitary defense applicable anywhere, also, in populated areas;

2-valuing and further personalizing the existing certifications, for example by certifying “GiESCO BIO -MetaEthics” insisting on the use of resistant varieties and the absence of copper residues in companies already certified “Organic”.

Obviously, the “Charter of Direct Sustainability BIO – MetaEthics” of the GiESCO fits the “Direct 4.1C Certification” and also the relative “Direct Guarantee 4.1C”: technical, economic, environmental, social, existential, ethical.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni CARGNELLO1, Alain CARBONNEAU2

1 Conegliano Campus 5.1C
2 Montpellier SupAgro, IHEV, Montpellier (France)

Contact the author

Keywords

sustainability 4.1CC, new direct certification 4.1CC

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;

Efecto de distintos ambientes sobre las características físico – químicas y sensoriales del Montepulciano d’Abruzzo DOC

La región de Abruzzo está situada entre los Apeninos y el mar Adriático, limitando al norte con el río Tronto y al sur con el Trigno. Desde un punto de vista físico se divide en dos franjas

Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Unlike table wines, Madeira Wine (MW,17-22% ABV) benefits from a long aging period under thermo-oxidative aging conditions, during which it gains its unique and complex flavour. A broad study is ongoing and aims to assess if the differences in the storage conditions impact significantly the evolution of MWs during canteiro aging. Considering that polyphenols have a significant role in the wine aging, we intended to appraise if there are significant differences in the evolution trends of polyphenols of MWs aging in different cellars under canteiro. Different MWs were aged into brand-new oak casks in two different wine cellars, one in Funchal (B) and other in Caniçal (Z). Temperature and humidity data were sensor recorded. RP-HPLC-DAD was used to perform the identification and quantification of polyphenols [1]. CIELab parameters were also assessed, using an UV-Vis spectrophotometer.