GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

Abstract

Context and purpose of the study – ‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.

Material and methods – Samples of ‘Mavrodafni’ and ‘Renio’ were collected from six different regions of cultivation of the PDO Mavrodafni Patras. The samples collected in the different regions originated from the same vineyards. In view of the study’s aim, the samples were studied and analyzed using High Performance Liquid Chromatography (HPLC) coupled with a diode array detector and spectrophotometer in order to determine total soluble solids, pH, total titratable acidity, polyphenol content and antioxidant capacity.

Results – The results revealed that, in general, ‘Mavrodafni’ and ‘Renio’ exhibited different polyphenolic profile in the case where the samples originated from the same vineyard as well as in the case where the samples originated from different regions of the PDO Madrodafni Patras. In particular, the must of ‘Mavrodafni’ exhibited higher concentration in sugars, with a statistically significant difference compared to ‘Renio’, while there were no differences recorded neither in total titratable acidity of the must nor in the average weight of bunch. ‘Mavrodafni’ recorded the highest concentrations in skin total phenolics, skin total anthocyanins, skin total tannins in all studied regions, with a statistically significant difference compared to ‘Renio’. ‘Mavrodafni’ and ‘Renio’ contained appreciable amounts of quality characters of grape and must, depending on the different regions where they are cultivated, and they would be worthy of further study and use for the production of different types of wines.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Katerina BINIARI1*, Ioannis DASKALAKIS1, Despoina BOUZA1, Maritina STAVRAKAKI1

Laboratory of Viticulture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece

Contact the author

Keywords

anthocyanins, grape skins, must, polyphenols, tannins, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

Evaluation of aroma characteristics in Vitis amurensis grapes across different regions by using HS-SPME-GC/MS

Background: Aroma compounds are important secondary metabolite in grapes and play important roles in the flavor and quality of grape berries and their wines. Vitis amurensis grape belongs to the East Asian Vitis spp., with excellent cold and disease resistance, and exhibits strong brewing potential. However, it has not been effectively utilized and there is no systematic research on the aroma compounds of V. amurensis grapes.
Methods: To provide sufficient experimental evidence for the characteristic aroma of V. amurensis grape, HS-SPME-GC/MS was used to identify the aroma compounds of five V. amurensis (‘Beiguohong’, ‘Beiguolan’, ‘Shuangfeng’, ‘Shuanghong’, ‘Shuangyou’) and three interspecific hybrids (‘Beibinghong’, ‘Xuelanhong’, ‘Zuoyouhong’) grapes in Zuojia and Ji’an. The grape berries were collected at harvest in 2020, 2021 and 2022.

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

Non-invasive grapevine inflorescence detection using YOLOv11 under field conditions

Accurate and early yield estimation in vineyards is essential for the effective management of resources and informed decision-making in viticulture.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].