GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

Abstract

Context and purpose of the study – ‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.

Material and methods – Samples of ‘Mavrodafni’ and ‘Renio’ were collected from six different regions of cultivation of the PDO Mavrodafni Patras. The samples collected in the different regions originated from the same vineyards. In view of the study’s aim, the samples were studied and analyzed using High Performance Liquid Chromatography (HPLC) coupled with a diode array detector and spectrophotometer in order to determine total soluble solids, pH, total titratable acidity, polyphenol content and antioxidant capacity.

Results – The results revealed that, in general, ‘Mavrodafni’ and ‘Renio’ exhibited different polyphenolic profile in the case where the samples originated from the same vineyard as well as in the case where the samples originated from different regions of the PDO Madrodafni Patras. In particular, the must of ‘Mavrodafni’ exhibited higher concentration in sugars, with a statistically significant difference compared to ‘Renio’, while there were no differences recorded neither in total titratable acidity of the must nor in the average weight of bunch. ‘Mavrodafni’ recorded the highest concentrations in skin total phenolics, skin total anthocyanins, skin total tannins in all studied regions, with a statistically significant difference compared to ‘Renio’. ‘Mavrodafni’ and ‘Renio’ contained appreciable amounts of quality characters of grape and must, depending on the different regions where they are cultivated, and they would be worthy of further study and use for the production of different types of wines.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Katerina BINIARI1*, Ioannis DASKALAKIS1, Despoina BOUZA1, Maritina STAVRAKAKI1

Laboratory of Viticulture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece

Contact the author

Keywords

anthocyanins, grape skins, must, polyphenols, tannins, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Impact of technical itineraries on the diversity and the functioning of arbuscular mycorrhizal fungi and associated microorganisms in vineyards soils and grapevine roots

Context and purpose. The vine is a holobiont, where the plant interacts positively, negatively, and neutrally with microbes that together form the vine’s microbiome.

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4