GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

Comparative study of qualitative and quantitative characters of grape cultivar ‘Mavrodafni’ (Vitis vinifera L.) grown in different regions of the PDO Mavrodafni Patras

Abstract

Context and purpose of the study – ‘Mavrodafni’ (Vitis vinifera L.) is considered one of the oldest grapevine cultivars indigenous to the Greek vineyard, with western Peloponnese being its primary center of cultivation. ‘Renio’ is considered to be either a variant of ‘Mavrodafni’ or an altogether different cultivar. Both ‘Mavrodafni’ and ‘Renio’ can be found in the vineyards of the centers of cultivation, since ‘Renio’ is considered to be more productive compared to ‘Mavrodafni’, and for this reason, it has gradually replaced ‘Mavrodafni’ from cultivation over the course of time. The aim of the present study was to assay the mechanical properties, the polyphenolic content and the antioxidant capacity of skin extracts and must of berries coming from ‘Mavrodafni’ and ‘Renio’, cultivated in the same vineyard as well as in the different regions of cultivation of the PDO Mavrodafni Patras.

Material and methods – Samples of ‘Mavrodafni’ and ‘Renio’ were collected from six different regions of cultivation of the PDO Mavrodafni Patras. The samples collected in the different regions originated from the same vineyards. In view of the study’s aim, the samples were studied and analyzed using High Performance Liquid Chromatography (HPLC) coupled with a diode array detector and spectrophotometer in order to determine total soluble solids, pH, total titratable acidity, polyphenol content and antioxidant capacity.

Results – The results revealed that, in general, ‘Mavrodafni’ and ‘Renio’ exhibited different polyphenolic profile in the case where the samples originated from the same vineyard as well as in the case where the samples originated from different regions of the PDO Madrodafni Patras. In particular, the must of ‘Mavrodafni’ exhibited higher concentration in sugars, with a statistically significant difference compared to ‘Renio’, while there were no differences recorded neither in total titratable acidity of the must nor in the average weight of bunch. ‘Mavrodafni’ recorded the highest concentrations in skin total phenolics, skin total anthocyanins, skin total tannins in all studied regions, with a statistically significant difference compared to ‘Renio’. ‘Mavrodafni’ and ‘Renio’ contained appreciable amounts of quality characters of grape and must, depending on the different regions where they are cultivated, and they would be worthy of further study and use for the production of different types of wines.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Katerina BINIARI1*, Ioannis DASKALAKIS1, Despoina BOUZA1, Maritina STAVRAKAKI1

Laboratory of Viticulture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece

Contact the author

Keywords

anthocyanins, grape skins, must, polyphenols, tannins, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

The role of ampelographic collection in genetic improvement of native varieties and the creation new varieties

The available plant diversity is maintained in global genetic collections and germplasm banks. One of the main objectives of the study of the genetic material of vine still conducting research to characterize the genotypes and the creation of new varieties. The main ampelographic collection of the country, the largest in the Balkans, is located at the Athens Vine Institute in Lykovrisi, Attica, in an area of 70 acres. It contains more than 800 varieties, most of which are indigenous. The Institute is conducting research on the genetic improvement of native varieties and the creation new winemaking and table grape varieties of high productivity, grape quality, resistance to fungal diseases and their adaptability to stresses using the hybridization method using European high-quality varieties.