GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Montpellier vine & wine sciences (M-WineS)

Montpellier vine & wine sciences (M-WineS)

Abstract

Context and purpose of the study – The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.

Objectives – Montpellier Vine & Wine Sciences aims to develop the Montpellier research-educationinnovation cluster in the vine and wine sector.The goal is to bring Montpellier research and education actors all together in order to ease exchanges among research subjects: French Institute of Agronomic Research, University of Montpellier, Montpellier SupAgro, National Research Institute of Sciences and Technology for Environment and Agriculture. There is an involvement of 15 research structures in M-WineS, among them 150 scientists, 13 research labs and 2 experimental units. The M-WineS collective offers higher education and welcomes 400 students each year.The purpose of M-WineS is to better answer the vine & wine sector issues – environmental footprint reduction, adaptation to climate change, quality construction for the market, digital transition – and to strengthen the site’s visibility and attractiveness. M-WineS works with doctoral schools and community tools, and has already several links with the vine and wine sector’s stakeholders: industrial clusters, competitiveness hub, Vine and Wine cooperatives, Regional and Departmental Chambers of Agriculture, Vine inter-professions. M-WineS will also reinforce its links with international Universities.

Some representative projects

– A panel of 279 accessions of Vitis vinifera vine to develop integrated projects from gene to glass

The aim is to have a representation panel of the Vitis vinifera genetic diversity with 279 cultivars, to identify the genetic basis of the vine’s traits of interest by Genome-Wide Association Study. Exploring genetic basis and eco-physiology of the plants, linked with wine characteristics, will allow scientists to select and create grape varieties consuming less inputs, more adapted to constraining climates, and meeting the consumers demand if quality wine.

– The production competitiveness observatory

The engagement of all the concerned research structures is an indispensable asset to build an observatory of different situations, evolutions, analysis tools of the factors determining industrial competitiveness, and action-levers allowing a rising competitiveness in the short term.

This observatory will reinforce partnership with industrials and institutional stakeholders of the sector.

– A Vine & Wine Sciences researchers school

This event aims at encouraging PhD students and young scientists to learn about other fields of study. This will allow them to know more about other approaches to deal with the key issues in various fields.

– MOOC “vine&wine sciences”

The aim is implement a MOOC dedicated to introduce to vine and wine sciences with an extension of available languages, queez, videos…

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Steering Committee of Montpellier Vine & Wine Sciences, MUSE: Bruno BLONDIN1, Elise BOURRU*2, Hervé HANNIN1, Gaspard LÉPINE3, Carole MAUREL2, Cédric SAUCIER2, Thierry SIMONNEAU3, Jean-Marc TOUZARD3 and Laurent TORREGROSA1, member of M-WineS

1 Montpellier SupAgro
2 University of Montpellier
3 INRA Address :2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

vine and wine sector, scientists, partnership, research, education, innovation, industrial transfer, Montpellier, international attractiveness

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

The relationship between wind exposure and viticultural performance of Vitis vinifera L. cv. Merlot in a coastal vineyard (South Africa)

The South Western Cape of South Africa is exposed to strong southerly and south easterly synoptic winds during the growth period of the grapevine. The development of sea breezes in the afternoon is also a phenomenon associated with the ripening period of grapes cultivated in this coastal area. Wind is one of the environmental variables having the greatest spatial variation but the implications of regular exposure to wind for the performance of the grapevine has not yet been determined for vineyards in the South Western Cape. This study was initiated to meet this need.
The study was conducted in a hedge-trellised vineyard of Vitis vinifera L. cv Merlot with north east – south west row direction. Thirty experimental sites, each consisting of 14 vines, were identified as being exposed to wind or sheltered based on hand-held anemometer readings during the 2001/2002 season. Four stationary anemometers were strategically positioned between the thirty sites. Stomatal conductance and leaf temperature were measured with a PP systems porometer. Vegetative and yield measurements were performed during the 2002/2003 season. The t-test of equal variance was used to determine significant differences in measured parameters between exposed and sheltered grapevines.
Stomatal conductance and leaf area were significantly reduced by exposure to wind. This was associated with a significant reduction in the leaf area of primary shoots, related to shorter shoots, but a significant augmentation of secondary shoot leaf number and area. The number of bunches per vine and yield were also reduced for exposed vines. The berry potassium content was significantly increased for exposed grapevines.
This demonstrates that exposure to wind can result in significant within-vineyard, and potentially between-vineyard, variability in grapevine physiology, vegetative growth, yield and berry composition, with implications for wine style and quality.

Effect of the shade generated by simulated solar panels in two row orientation on the physiology and productivity of Vitis vinifera L. cv. Malbec

Context and purpose of the study. In regions where grapevines are grown under irrigation, like most regions in Argentina, the wine industry should adopt more sustainable strategies and production systems towards a higher water use efficiency and a reduction in no-renewable energy consumption.