GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Montpellier vine & wine sciences (M-WineS)

Montpellier vine & wine sciences (M-WineS)

Abstract

Context and purpose of the study – The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.

Objectives – Montpellier Vine & Wine Sciences aims to develop the Montpellier research-educationinnovation cluster in the vine and wine sector.The goal is to bring Montpellier research and education actors all together in order to ease exchanges among research subjects: French Institute of Agronomic Research, University of Montpellier, Montpellier SupAgro, National Research Institute of Sciences and Technology for Environment and Agriculture. There is an involvement of 15 research structures in M-WineS, among them 150 scientists, 13 research labs and 2 experimental units. The M-WineS collective offers higher education and welcomes 400 students each year.The purpose of M-WineS is to better answer the vine & wine sector issues – environmental footprint reduction, adaptation to climate change, quality construction for the market, digital transition – and to strengthen the site’s visibility and attractiveness. M-WineS works with doctoral schools and community tools, and has already several links with the vine and wine sector’s stakeholders: industrial clusters, competitiveness hub, Vine and Wine cooperatives, Regional and Departmental Chambers of Agriculture, Vine inter-professions. M-WineS will also reinforce its links with international Universities.

Some representative projects

– A panel of 279 accessions of Vitis vinifera vine to develop integrated projects from gene to glass

The aim is to have a representation panel of the Vitis vinifera genetic diversity with 279 cultivars, to identify the genetic basis of the vine’s traits of interest by Genome-Wide Association Study. Exploring genetic basis and eco-physiology of the plants, linked with wine characteristics, will allow scientists to select and create grape varieties consuming less inputs, more adapted to constraining climates, and meeting the consumers demand if quality wine.

– The production competitiveness observatory

The engagement of all the concerned research structures is an indispensable asset to build an observatory of different situations, evolutions, analysis tools of the factors determining industrial competitiveness, and action-levers allowing a rising competitiveness in the short term.

This observatory will reinforce partnership with industrials and institutional stakeholders of the sector.

– A Vine & Wine Sciences researchers school

This event aims at encouraging PhD students and young scientists to learn about other fields of study. This will allow them to know more about other approaches to deal with the key issues in various fields.

– MOOC “vine&wine sciences”

The aim is implement a MOOC dedicated to introduce to vine and wine sciences with an extension of available languages, queez, videos…

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Steering Committee of Montpellier Vine & Wine Sciences, MUSE: Bruno BLONDIN1, Elise BOURRU*2, Hervé HANNIN1, Gaspard LÉPINE3, Carole MAUREL2, Cédric SAUCIER2, Thierry SIMONNEAU3, Jean-Marc TOUZARD3 and Laurent TORREGROSA1, member of M-WineS

1 Montpellier SupAgro
2 University of Montpellier
3 INRA Address :2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

vine and wine sector, scientists, partnership, research, education, innovation, industrial transfer, Montpellier, international attractiveness

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

A comprehensive study on the effect of foliar mineral treatments on grapevine microbiota, flavonoid gene expression, and berry composition

Recently, foliar treatments with mineral-based compounds have shown positive effects on grapevine production by protecting grape from thermal excesses and reducing the decoupling between technological and phenolic maturity caused by climate change. Unraveling the effect of mineral particle applications on grape-associated microbes is pivotal for successful wine processing, due to the influence of the microbiota on wine composition and stability. To our knowledge, this is the first work that comprehensively studied the effects of kaolin and chabasite-rich zeolitites treatments on grape-related microorganisms (by real-time PCR quantification of total fungi, Hanseniospora uvarum, Metschnikowia pulcherrima, plant-associated bacteria and lactic acid bacteria), the expression of genes related to the flavonoid biosynthesis (PAL1, CHS1, F3H2, DFR, LDOX, UFGT, MYBA1, GST4, FLS4 genes) and the berry composition (°Brix, pH, acidity and anthocyanin concentrations) in cv. Sangiovese during ripening in two growing seasons (2019 and 2020).

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Artificial intelligence-driven classification method of grapevine phenology using conventional RGB imaging

The phenological stage of the grapevine (Vitis vinifera L.) represents a fundamental element in vineyard management, since it determines key practices such as fertilization, irrigation, phytosanitary interventions and optimal harvest time (Mullins et al., 1992).

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process