GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Montpellier vine & wine sciences (M-WineS)

Montpellier vine & wine sciences (M-WineS)

Abstract

Context and purpose of the study – The Occitanie Region is the first vine-growing area in France: 270 000 hectares of vineyard and an annual production of 15 million hectoliters. Its annual income reaches 1 900 million euros, of which 900 million euros in export.The vine and wine sector is facing many issues: inputs reduction, adaptation to climate change, maintaining the production competitiveness, digital tools integration in production and transformation processes, and the production of quality wines meeting the consumer demand.

Objectives – Montpellier Vine & Wine Sciences aims to develop the Montpellier research-educationinnovation cluster in the vine and wine sector.The goal is to bring Montpellier research and education actors all together in order to ease exchanges among research subjects: French Institute of Agronomic Research, University of Montpellier, Montpellier SupAgro, National Research Institute of Sciences and Technology for Environment and Agriculture. There is an involvement of 15 research structures in M-WineS, among them 150 scientists, 13 research labs and 2 experimental units. The M-WineS collective offers higher education and welcomes 400 students each year.The purpose of M-WineS is to better answer the vine & wine sector issues – environmental footprint reduction, adaptation to climate change, quality construction for the market, digital transition – and to strengthen the site’s visibility and attractiveness. M-WineS works with doctoral schools and community tools, and has already several links with the vine and wine sector’s stakeholders: industrial clusters, competitiveness hub, Vine and Wine cooperatives, Regional and Departmental Chambers of Agriculture, Vine inter-professions. M-WineS will also reinforce its links with international Universities.

Some representative projects

– A panel of 279 accessions of Vitis vinifera vine to develop integrated projects from gene to glass

The aim is to have a representation panel of the Vitis vinifera genetic diversity with 279 cultivars, to identify the genetic basis of the vine’s traits of interest by Genome-Wide Association Study. Exploring genetic basis and eco-physiology of the plants, linked with wine characteristics, will allow scientists to select and create grape varieties consuming less inputs, more adapted to constraining climates, and meeting the consumers demand if quality wine.

– The production competitiveness observatory

The engagement of all the concerned research structures is an indispensable asset to build an observatory of different situations, evolutions, analysis tools of the factors determining industrial competitiveness, and action-levers allowing a rising competitiveness in the short term.

This observatory will reinforce partnership with industrials and institutional stakeholders of the sector.

– A Vine & Wine Sciences researchers school

This event aims at encouraging PhD students and young scientists to learn about other fields of study. This will allow them to know more about other approaches to deal with the key issues in various fields.

– MOOC “vine&wine sciences”

The aim is implement a MOOC dedicated to introduce to vine and wine sciences with an extension of available languages, queez, videos…

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Steering Committee of Montpellier Vine & Wine Sciences, MUSE: Bruno BLONDIN1, Elise BOURRU*2, Hervé HANNIN1, Gaspard LÉPINE3, Carole MAUREL2, Cédric SAUCIER2, Thierry SIMONNEAU3, Jean-Marc TOUZARD3 and Laurent TORREGROSA1, member of M-WineS

1 Montpellier SupAgro
2 University of Montpellier
3 INRA Address :2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

vine and wine sector, scientists, partnership, research, education, innovation, industrial transfer, Montpellier, international attractiveness

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Intelligent article to control the internal pressure in continue in bottles

An intelligent packaging might, among others, provide information and allow monitoring of the quality of the packed product or its surrounding environment. A recent project on micro-flow wine bottles closed with aluminium screw cap and tightness liner, highlighted the importance of monitoring the internal overpressure continuously, in real-time and at least for 72 hours, since the internal pressure on the tightness liner and the micro-flow are related. Real-time and continuous measurements are not the standard methods of measurement of the overpressure, yet. The most used equipment for the determination of the pressure in wine bottle is the aphrometer, a destructive device that supplies a single value of pressure.

The history of the first demarkated wine region of the world – the Tokaj wine region

The optimal climatic conditions of the region were proved in 1867, when a leaf-print of Vitis tokaiensis was found in a stone from miocen age (13 million years ago).

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.