Terroir 2014 banner
IVES 9 IVES Conference Series 9 Construction of a 3D vineyard model using very high resolution airborne images

Construction of a 3D vineyard model using very high resolution airborne images

Abstract

In recent years there has been a growth in interest and number of research studies regarding the application of remote optical and thermal sensing by unmanned aerial vehicle (UAV) in agriculture and viticulture. Many papers report on the use of images to map or estimate the growth and water status of plants, or the heterogeneity of different parcels. Most often, NDVI or other similar indices are used. However, analysis of this type of image is difficult in vineyards covered with grass, because contrast between the green of the grass and the green of the vine is low and difficult to classify. This paper presents the acquisition methodology of very high-resolution (5 [cm]) images and their processing to construct a three-dimensional surface model for the creation of precise digital surface and terrain models in order to separate different strata of a vineyard.

The images were acquired with a Sensefly Swinglet CAM unmanned aerial vehicle at an altitude of 110 [m], allowing for a resolution of 5 [cm]. The images were combined using Pix4D software, with a lateral overlap of 75% and a longitudinal overlap of 60%. The produced digital terrain and surface model was subtracted and an extraction mask containing only vine pixel was created. The results show the importance of using a precise digital terrain model. The raster file obtained by subtracting the DSM and the DTM showed values between -0.1 and + 2 m. in good accordance with the average value of the vine. The great majority of pixels fell between the threshold (0.5 [m]) and the topping values 1.6[m]). Using this procedure and parameters, an extremely precise surface model is obtained, as well as the pattern of the vineyard rows and, to some extent, the location of different plants stocks. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

DOI:

Publication date: July 29, 2020

Issue: Terroir 2014

Type: Article

Authors

S Burgos (1), M Mota (1), D. Noll (1), W. Metz (1), N. Delley (2), M. Kasser (2), B. Cannelle (2)

(1) University for Viticulture and Oenology Changins, 1260 Nyon Switzerland 
(2) School of Engineering and management Vaud (HEIG-VD), 1400 Yverdon, Switzerland 

Contact the author

Keywords

UAV, vineyard, green cover, 3D-models, precision viticulture

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

From the “climats de Bourgogne” to the terroir in bottles

From a chemical composition point of view, wine is the result of complex interplays between environmental, genetic and human factors. The notion of terroir in viticulture involves the vine and its environment, including phenology, geography, geology, pedology and local climate of a vineyard, along with human inputs.

Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Regionality, frequently called terroir, is often used to market wines from different locations. Savatiano (Vitis Vinifera L.), is the dominant indigenous variety of the Mesogeia – Attiki region, reaching a percentage of 70% of the total vine cultivation, and being the most widely planted variety in Greece. In this context, this research focuses on the evaluation of the impact of different terroirs within the PGI Attiki zone on the aromatic profile of Savatiano.

Effect of topography on vine evapotranspiration and water status in hillside vineyards

Many winegrape regions have hillside vineyards, where vine water use is affected by vine age, density and health, canopy size, row orientation, irrigation practices

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Zoning mountain landscapes for a valorisation of high identity products

Mountain agriculture is made difficult by the geomorphological complexity of the territory. This is especially true for viticulture: over the centuries the work of men in such a difficult environment