GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Abstract

Context and purpose of the study – Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Material and methods – During two years, three replicates of 10 plants of Chardonnay, 5 plants grafted onto 110R and 5 on 101-14 Mgt, were monitored in a drip-irrigated experimental vineyard. Each experimental unit was equipped with time-domain reflecrometer sensors for continuous measurement of soil water and with stainless-steel rods and micro-borehole electrodes for time-lapse 2D and 3D electrical resistivity tomography (ERT). The soil profile was described with soil pits at both ends of the experimental units and sampled for physical-chemical analysis. Grapevine water status of each vine was monitored routinely with 3h-lag diurnal cycles of water potentials and leaf gas-exchanges (from predawn to following night) and δ13C at harvest. Light and Ci photosynthesis response curves, predawn Fv/Fm were measured under dry and wet conditions. Grape composition, yield components and pruning-weights were also measured.

Results – Different models were tested to develop a pedotransfer function and transform electrical resistivity into soil volume wetness. Due to the sandy nature of the soil the Archie law performed well and was used to map water depletion in 3D with an error of 1.2 %vol., R2 = 0.73 (measured on an independent test set). Before rewetting the grapevine experienced severe drought stress in both years of the study (< – 10MPa in predawn), and amount of soil water per vine was significantly correlated to single plant water potentials and to canopy size. One fold differences in the amount of soil water absorbed by the two rootstocks were reached at the end of the drought period, with distinct spatial patterns. The 110R was more conservative, and soil depletion was localized in space around each vines, while the 101-14 was less conservative and more homogenously and deeply depleted the soil profile affecting whole plant water status and leaf physiology that was more depressed. Replenishment of the fraction of transpired soil water by drip irrigation was imaged by time-lapse ERT, and differences were observed in the reaction to rewetting by the two rootstocks.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, M. Andrew WALKER2, Andrew J. McELRONE2, 3, S. Kaan KURTURAL2

Dep. of Viticulture and Enology, California State University, Fresno, CA 93740, USA
Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
USDA-Agricultural Research Service, Davis, CA 95616, USA

Contact the author

Keywords

grapevine, rootstocks, Electrical Resistivity Tomography ERT, water stress, soil water, drought, drip irrigation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Nitrogen forms and Iron deficiency: how do Grapevine rootstocks responses change?

Grapevine rootstocks provide protection against environmental biotic and abiotic stresses. Nitrogen (N) and iron (Fe) are growth-limiting factors in many crop plants due to their effects on the chlorophyll and photosynthetic characteristics. Iron nutrition of plants can be significantly affected by different nitrogen forms through altering the uptake ratio of cations and anions, and changing rhizosphere pH. The aim of this study was to investigate the response mechanisms of grapevine rootstocks due to the interaction between different nitrogen forms and iron uptake.

Importance des propriétés optiques de la surface du sol sur le microclimat de la vigne. Répercussions de l’usage d’un revêtement de sol réfléchissant sur la composition des moûts et sur la qualité du vin

Cette recherche a eu pour but l’étude des effets d’un renforcement radiatif et thermique sur les zones inférieures de la canopée de la vigne (solarisation par des films ou des paillages réfléchissants installés sur le sol, sous les ceps), notamment l’étude de leurs conséquences sur la composition biochimique des moûts à la vendange et sur la qualité des vins.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Mapping climate and bioclimatic indices at high-resolution in vineyard regions

Many of the world’s vineyard regions are located in regions of complex terrain, with the result there is significant local climate variation.

Production and technological characteristics of some French clones of the Chardonnay variety in Yugoslavia

L’observation est effectuée entre 1996 et 1998. L’expérience a commencé avec des clones numérotés: 75, 95, 96 et 227 de la variété Chardonnay. Le porte greffe est le Kober 5 BB. La forme de conduite est le cordon. La taille est longue. La densité de plantation est 3,5 x 1 mètre (2857 ceps par 1/ha).