GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Abstract

Context and purpose of the study – Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Material and methods – During two years, three replicates of 10 plants of Chardonnay, 5 plants grafted onto 110R and 5 on 101-14 Mgt, were monitored in a drip-irrigated experimental vineyard. Each experimental unit was equipped with time-domain reflecrometer sensors for continuous measurement of soil water and with stainless-steel rods and micro-borehole electrodes for time-lapse 2D and 3D electrical resistivity tomography (ERT). The soil profile was described with soil pits at both ends of the experimental units and sampled for physical-chemical analysis. Grapevine water status of each vine was monitored routinely with 3h-lag diurnal cycles of water potentials and leaf gas-exchanges (from predawn to following night) and δ13C at harvest. Light and Ci photosynthesis response curves, predawn Fv/Fm were measured under dry and wet conditions. Grape composition, yield components and pruning-weights were also measured.

Results – Different models were tested to develop a pedotransfer function and transform electrical resistivity into soil volume wetness. Due to the sandy nature of the soil the Archie law performed well and was used to map water depletion in 3D with an error of 1.2 %vol., R2 = 0.73 (measured on an independent test set). Before rewetting the grapevine experienced severe drought stress in both years of the study (< – 10MPa in predawn), and amount of soil water per vine was significantly correlated to single plant water potentials and to canopy size. One fold differences in the amount of soil water absorbed by the two rootstocks were reached at the end of the drought period, with distinct spatial patterns. The 110R was more conservative, and soil depletion was localized in space around each vines, while the 101-14 was less conservative and more homogenously and deeply depleted the soil profile affecting whole plant water status and leaf physiology that was more depressed. Replenishment of the fraction of transpired soil water by drip irrigation was imaged by time-lapse ERT, and differences were observed in the reaction to rewetting by the two rootstocks.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Luca BRILLANTE1*, M. Andrew WALKER2, Andrew J. McELRONE2, 3, S. Kaan KURTURAL2

Dep. of Viticulture and Enology, California State University, Fresno, CA 93740, USA
Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
USDA-Agricultural Research Service, Davis, CA 95616, USA

Contact the author

Keywords

grapevine, rootstocks, Electrical Resistivity Tomography ERT, water stress, soil water, drought, drip irrigation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Résistance stomatique et caractérisation hydrique des terroirs viticoles

The analysis of the distribution of natural plant populations allows an ecological characterization of cultivated environments in thermal, water and trophic terms; it guides the choice or selection of plants (or grape varieties) to cultivate (Astruc et al ., 1984, 1987; Delpoux, 1971; Jacquinet and Astruc, 1979). This approach has given good results in areas where the topography is the determining factor in the ecological differentiation of the terroirs.

Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

In the province of Frosinone from 1850 they are cultivated in some zones wine grape of French origin like Merlot, Cabernet franc Cabernet sauvignon, Sirah, Pinot noir. The insertion of these varieties was the work of Pasquale Visocchi in the great company of family “Fratelli Visocchi Proprietari” (F. V.P.).

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2).

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

METHYL SALICYLATE: A TRENDY COMPOUND MARKER OF ZELEN, A UNIQUE SLOVENIAN VARIETY

The wine market interest for autochthonous varieties, particularly from less known wine regions, has significantly raised in the past few years. In that context, Slovenia, a small country from central Europe with a long winemaking tradition, is getting more and more attention, particularly through its range of unique regional varieties. Among them, Zelen, meaning “green” in Slovene, can only be found in the Vipava valley region, located on the western side of the country, near the border with Italy. When they are young, Zelen wines display very singular aromas reminiscent of rosemary, sage and white fruit. Despite its uniqueness, Zelen wine aromatic typicality is poorly documented in the literature.