GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

Abstract

Context and purpose of the study – The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world. There is a need to assess different wine grape varieties under the same growing conditions to enable conclusions on the differences in their response to drought and facilitate variety-specific irrigation management.

Material and methods – The vineyard was located in the ROZA irrigation district in the Yakima valley, Washington. Varieties were grown side by side and replicated 8 times. Spacing was 1.8 m x 2.7 m in a North-South orientation. The vines were on their own-roots, double-trunked, trained to a bi-lateral cordon. 12-18 varieties of wine grape grown were studied for this experiment. Access tubes were installed for soil moisture measurements using a neutron probe, and irrigation was independently controlled for each row. Dry-down cycles were applied pre- and post-veraison from 2016 to 2018. On the same day, predawn (Ψpd) and midday leaf water potential (Ψmd) were measured with a pressure chamber, stomatal conductance (gs) was measured with a porometer at midday and on the same leaf in 2016 and 2017 and with an infrared gas analyzer in 2018. Soil moisture measurements were taken on the same day for each vine.

Results – The results show that there may be three distinctive major patterns of midday leaf water potential response to soil water availability: Linear drop across the entire soil moisture range such as for Cabernet franc and Semillon, linear drop below a threshold of soil moisture such as for Gewurztraminer and Grenache, and an insensitive to soil moisture such as for Lemberger and Riesling. Meanwhile, the stomatal sensitivity did not always mirror the Ψmd behavior; for example some varieties like Cabernet franc show a linear drop of Ψmid while having a tight stomatal control during soil drought (r=0.76) while other varieties like Riesling have an insensitive response of Ψmid (r=0.33) without necessarily having sensitive stomata (r=0.56). Finally, the slope of the linear Ψmd:Ψpd, studied as an the indicator of the internal regulation of water status, varied between 0.4 for Grenache and 1 for Semillon. This shows that for our vineyard, transpiration sensitivity was always higher than hydraulic sensitivity. Since intense yellowing of leaves has been recorded in varieties like Cabernet franc, Muscat blanc and Malbec, these results direct us to inspect if the sensitivity of gs in those varieties is leading to carbon starvation during drought. These results may eventually be used by growers to devise variety-specific irrigation management strategies.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Joelle MARTINEZ*, Markus KELLER

Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA

Contact the author

Keywords

wine grape, Isohydric, Anisohydric, stomatal regulation, water potential, hydraulic regulation

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

One of the reasons of the spread of grapevine virus diseases in
vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation
specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and
maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Influenza dell’esposizione del vigneto sulla maturazione dell’uva

Lo studio è stato condotto in vigneti commerciali di Vitis vinifera cv Nebbiolo localizzati in Piemonte, Italia del Nord-Ovest, intorno alla sommità di una collina. L’obiettivo dello studio è stato di determinare come l’esposizione del vigneto possa influenzare il comportamento vegetativo della vite, il manifestarsi delle fasi fenologiche, e la cinetica di maturazione dell’uva con particolare riguardo all’accumulo di antociani e flavonoli.

La zonazione in due zone viticole dell’emilia Romagna

Entre 1988 et 1995, dans la région Emilia-Romagna, deux zonages viticoles ont été complétés en zones assez differentes, soit géographiquement, soit par les conditions pedo-climatiques, soit par l’encépagement.

Toward an automatic way to identify red blotch infected vines from hyperspectral images acquired in the field

Vineyards are affected by different virus diseases, which can lower yield and affect the quality of grapes. Grapevine red blotch disease is one of them, and no curative solution exists. Once infected, a vine must be removed and replaced with a virus-free vine (aka roguing). Screening vineyards to look for symptoms can be time-consuming and needs well-trained experts. To improve this process, we conducted an experiment identifying infected vines using a hyperspectral camera in the field.

Generation of functional chitosan derivatives to better understanding the antiseptic effect on Brettanomyces bruxellensis in wine

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011). This yeast is able to produce volatil phenols and is responsible of organoleptic deviations compromising quality and typicality of red wines [1]. Despite the fact that fungal chitosan is highly renewable, no toxic and non-allergenic, its use remains marginal because this treatment is relatively recent (compare to sulphites treatment) and information are contradictory between different studies described in literature. For all these reasons,