GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Study on the impact of clone on the varietal aroma of Xinomavro

Study on the impact of clone on the varietal aroma of Xinomavro

Abstract

Context and purpose of the study: It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.

Material and methods: In this study we determined by gas chromatography/mass spectrometry (GC-MS) the volatile compounds responsible for varietal aroma of nine clone candidates of Xinomavro. The research was conducted during two consecutive years (2017 and 2018). The vineyard was planted in 2011, with material selected according to the corresponding E.U. legislation for vine clone selection.

Results: We identified volatile compounds in both free-volatile and bound forms with glycosides. The second category is crucial for wine quality since it constitutes the pool for future wine aroma.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maria METAFA1, Sofoklis PERTOPOULOS2,4, Yorgos KOTSERIDIS2, Stefanos KOUNDOURAS3, Athanasios PANAGIOTOPOULOS1,2, Konstantinos BAKASIETAS4, Stamatina KALLITHRAKA2*

Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DEMETER (ELGO-DEMETER, S. Venizelou 1, Lykovrissi 14123, Greece
Laboratory of Enology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Hellenifera, VNB Bakasietas Vine Nursery, Leontio, Nemea, 20500, Corinth

Contact the author

Keywords

Xinomavro, volatile compounds, varietal aroma, vine clone

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.

Vinhos de talha: to pitch or not to pitch

In Alentejo, south of Portugal there is a traditional way of fermenting wines in clay vessels, known as “Vinhos de Talha”. Clay vessels were traditionally impermeabilized using pine pitch, creating a barrier between the fermenting must and the clay. Due to this unusual production technology that uses of clay vessels, instead of inox or wood vessels, “Vinhos de Talha” present unique characteristics increasingly appreciated by national and international consumers when compared with wine obtained by the said traditional methods of winemaking. Although the positive consumers feedback, there is little literature about the physical-chemical characteristics of these wines (Martins et al, 2018; Cabrita et al, 2018). This work aims to characterize the volatile composition of white wines produced in clay vessels with different coatings and to contribute to the knowledge and preservation of these wines that are a unique cultural heritage. Wine samples were produced during 2019 vintage from white grapes, using the traditional technology associated to these wines.

Viti-Tunnel, an automatically removable protection against diseases, frost and hail, a way to drastically reduce the use of pesticides

Viti-tunnel®, une innovation imaginée pour répondre à deux des objectifs majeurs des viticulteurs : 1.la sécurisation de la vendange : viti-tunnel® permet de protéger les vignobles des pertes de récolte dues aux maladies, au gel et à la grêle. 2.la réduction des pesticides : viti-tunnel® permet de réduire de plus de 90 %, le recours aux produits phytosanitaires et aux passages de pulvérisateurs, et ce, en toute sécurité pour la vendange. Un dispositif automatisé pour protéger les vignes viti-tunnel® est un dispositif de mise à l’abri automatique des rangs de vigne pendant les pluies et les évènements climatiques extrêmes.