GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Study on the impact of clone on the varietal aroma of Xinomavro

Study on the impact of clone on the varietal aroma of Xinomavro

Abstract

Context and purpose of the study: It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.

Material and methods: In this study we determined by gas chromatography/mass spectrometry (GC-MS) the volatile compounds responsible for varietal aroma of nine clone candidates of Xinomavro. The research was conducted during two consecutive years (2017 and 2018). The vineyard was planted in 2011, with material selected according to the corresponding E.U. legislation for vine clone selection.

Results: We identified volatile compounds in both free-volatile and bound forms with glycosides. The second category is crucial for wine quality since it constitutes the pool for future wine aroma.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maria METAFA1, Sofoklis PERTOPOULOS2,4, Yorgos KOTSERIDIS2, Stefanos KOUNDOURAS3, Athanasios PANAGIOTOPOULOS1,2, Konstantinos BAKASIETAS4, Stamatina KALLITHRAKA2*

Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DEMETER (ELGO-DEMETER, S. Venizelou 1, Lykovrissi 14123, Greece
Laboratory of Enology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Hellenifera, VNB Bakasietas Vine Nursery, Leontio, Nemea, 20500, Corinth

Contact the author

Keywords

Xinomavro, volatile compounds, varietal aroma, vine clone

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Investigating water stress-related seasonal and spatial patterns and the possible links with juice and wine compositional parameters

The mapping of spatial variability in vineyards offers the potential to implement zonal management strategies with the aim to optimize economic benefits and increase sustainability by managing natural resources, such as water used for irrigation, more optimally. This study characterized the (natural) variability in plant water status in a commercial Cabernet Sauvignon block, using remote sensing techniques, and identified the impact of this variability on the yield, and juice and wine composition. From the field data collected over two growing seasons, we demonstrated that remote sensing techniques are a practical and powerful tool for mapping spatial variability within vineyard blocks.

The vineyard landscape of the oasis norte of Mendoza Argentina. Economic assessment of the recreational use through contingent valuation method

Oasis Norte’s vineyards of Mendoza Argentina have shaped along their existence, a characteristic landscape; this area is close to Mendoza City

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.

What metabolomics teaches us about wine shelf life

The metabolomics era started about 22 years ago, and wine was one of the first foodstuff subjects of analysis and investigation by this technique.

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].