GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Study on the impact of clone on the varietal aroma of Xinomavro

Study on the impact of clone on the varietal aroma of Xinomavro

Abstract

Context and purpose of the study: It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.

Material and methods: In this study we determined by gas chromatography/mass spectrometry (GC-MS) the volatile compounds responsible for varietal aroma of nine clone candidates of Xinomavro. The research was conducted during two consecutive years (2017 and 2018). The vineyard was planted in 2011, with material selected according to the corresponding E.U. legislation for vine clone selection.

Results: We identified volatile compounds in both free-volatile and bound forms with glycosides. The second category is crucial for wine quality since it constitutes the pool for future wine aroma.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Maria METAFA1, Sofoklis PERTOPOULOS2,4, Yorgos KOTSERIDIS2, Stefanos KOUNDOURAS3, Athanasios PANAGIOTOPOULOS1,2, Konstantinos BAKASIETAS4, Stamatina KALLITHRAKA2*

Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DEMETER (ELGO-DEMETER, S. Venizelou 1, Lykovrissi 14123, Greece
Laboratory of Enology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Hellenifera, VNB Bakasietas Vine Nursery, Leontio, Nemea, 20500, Corinth

Contact the author

Keywords

Xinomavro, volatile compounds, varietal aroma, vine clone

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Grapevine abiotic stress induce tolerance to bunch rot

Context. Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid climate viticulture.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

La variabilità del colore in vini rosati dell’Italia meridionale

Nei vini rosati, è il colore ad avere il primo impatto con il consumatore. Esso risulterà tanto più accattivante, quanto più elegante e raffinato si presenta.

Synthesis of scientific research on the application of mechanized grapevine pruning in the Republic of Moldova

One of the basic problems in the viticulture branch is the improvement of perspective technologies for both vine training systems: with vertical standing and with free position of shoots, adapted to the requirements of complex mechanization.