GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Aztec» – the new white table grape resistant variety

«Aztec» – the new white table grape resistant variety

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new white Greek table variety grapes “Aztec”, created in 2013 by breeder P. Zamanidis at the Athens vineyard of the Institute of Olive, Subtropical Plants and Vine.

Material and methods – The variety created by crossing with the method of hybridization of the variety “Talisman” with the newly Greek variety “Ipirotis”. “Aztec” is a cross-breeding between American, European grapevine species and Far East varieties (V. Amurensis).

Results – The duration of the “Aztec” variety from budburst to maturity is146-155 days. The variety is very strong with large shoots growth(2,1 – 3,0 m). The growth of shoots is higher over 95%. The flowers are morphologically and physiologically hermaphrodite. The yield is moderate (30-40t grapes / ha). The size of the cluster is large with a length of 26 cm and a width 15 cm, the shape is conical, medium density. The length of the peduncle of the grape is 6 cm and the length of the peduncle of the berry is 0.9 cm. The average weight of the cluster is 600gr. The size of the berry is large,sort elliptical in shape, the berry is 25 mm long and 20 mm wide with weight 7 g, and green color. The number of seeds is 1-2 per berry. The skin is of thick and high strength. The flesh is without color with aromaticlight flavor Labrusca. The content of sugar in must is greater than 240 g /l. It has high resistance to fungal diseases, insects, high resistance to low temperatures, high resistance to drought and tolerant in Phylloxera.. The « Aztec » variety is suitable for table grape and tsipouro productionin areas withvery humidity.
Can be used as a resistance donor, in fungal diseases, low temperature andinsects, in the genetic improvement of vitisvenifera varieties.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1 ,G. Merkouropoulos1, Karazoglou1A.

1 Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture, Hellenic Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece
2 Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
3 Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica

Contact the author

Keywords

hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Un paysage viticole est une relation entre des formes, dimension objective, et la perception que nous en avons, dimension subjective, émotionnelle. La viticulture n’est pas seulement productrice d’un vin, elle contribue également à façonner le paysage. Pourtant, jusqu’à présent, la connaissance des terroirs était principalement basée sur la caractérisation de leur aptitude à produire des vins de qualité.

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Acceptability of canned wines: effect of the level of involvement of consumers and type of wine

In recent years there has been a growing demand for alternative packaging designs in the food industry focused on diminishing the carbon footprint. Despite the environmental advantages of cans versus bottles, the traditional environment of wine has hindered the establishment of less contaminant containers. In this context, the objective of this study was to understand and generate knowledge about consumers´ perception of canned wines in comparison to bottled wines.

Merging two genomes: a holistic approach to disentangle rootstock-mediated drought and recovery responses

Viticulture is facing many challenges due to climate change effects with increasingly attention to save resources, such as water, considering that drought events have been predicted to dramatically increase over the next future. Thanks to the -omics techniques, research pushed forward knowledge to deepen facets of drought response in diverse grapevine-rootstock combinations. However, the regulatory mechanisms orchestrating adaptation strategies during drought and recovery in grafted grapevines need further exploration. Herein, we combined ecophysiological, biochemical and molecular approaches to unravel drought and recovery-induced changes in potted Nebbiolo (NE) plants grafted onto three different rootstocks (3309, Kober5BB, Gravesac), by analysing root and leaf tissues.