GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 «Aztec» – the new white table grape resistant variety

«Aztec» – the new white table grape resistant variety

Abstract

Context and purpose of the study – This paper presents is the create, the study and amplographic description the new white Greek table variety grapes “Aztec”, created in 2013 by breeder P. Zamanidis at the Athens vineyard of the Institute of Olive, Subtropical Plants and Vine.

Material and methods – The variety created by crossing with the method of hybridization of the variety “Talisman” with the newly Greek variety “Ipirotis”. “Aztec” is a cross-breeding between American, European grapevine species and Far East varieties (V. Amurensis).

Results – The duration of the “Aztec” variety from budburst to maturity is146-155 days. The variety is very strong with large shoots growth(2,1 – 3,0 m). The growth of shoots is higher over 95%. The flowers are morphologically and physiologically hermaphrodite. The yield is moderate (30-40t grapes / ha). The size of the cluster is large with a length of 26 cm and a width 15 cm, the shape is conical, medium density. The length of the peduncle of the grape is 6 cm and the length of the peduncle of the berry is 0.9 cm. The average weight of the cluster is 600gr. The size of the berry is large,sort elliptical in shape, the berry is 25 mm long and 20 mm wide with weight 7 g, and green color. The number of seeds is 1-2 per berry. The skin is of thick and high strength. The flesh is without color with aromaticlight flavor Labrusca. The content of sugar in must is greater than 240 g /l. It has high resistance to fungal diseases, insects, high resistance to low temperatures, high resistance to drought and tolerant in Phylloxera.. The « Aztec » variety is suitable for table grape and tsipouro productionin areas withvery humidity.
Can be used as a resistance donor, in fungal diseases, low temperature andinsects, in the genetic improvement of vitisvenifera varieties.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Zamanidis1, Ch. Paschalidis2, L. Papakonstantinou3, D. Taskos1 ,G. Merkouropoulos1, Karazoglou1A.

1 Department of Viticulture of Athens. Institute of Olive Tree, Subtropical Cropsand Viticulture, Hellenic Agricultural Organization-DEMETER 1 S. Venizelou Str., 14123, Lykovrisi, Attiki, Greece
2 Technological Educational Institute of Peloponnese, School of Agricultural Technology, 24100 Antimalamos, Kalamata
3 Agricultural University of Athens, 75 IeraOdos str., 11855, Botanikos, Attica

Contact the author

Keywords

hybridization, variety, shoots, leaves, inflorescence, cluster, berry

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Is complex nutrition more advantageous than mineral nitrogen for the fermentative capacities of S. cerevisiae?

During alcoholic fermentation, nitrogen is an essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (yan) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species which may lead to economic losses. However, correcting this nitrogen deficiency is sometimes not enough to restore proper fermentation performance. This suggests the existence of other nutritional shortages.

Photo-oxidative stress and light-struck defect in Corvina rosé wines: influence of yeast nutritional strategies

Light exposure is one of the major factors affecting the sensory quality of rosé wines and resulting in the light-struck fault.

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Sensory and chemical phenotyping of wines from a F1 grapevine population

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU