terclim by ICS banner
IVES 9 IVES Conference Series 9 Is wine terroir a valid concept under a changing climate?

Is wine terroir a valid concept under a changing climate?

Abstract

The OIV[i] defines terroir as a concept referring to an area in which collective knowledge of the interactions between the physical and biological environment (soil, topography, climate, landscape characteristics and biodiversity features) and vitivinicultural practices develops, providing distinctive wine characteristics. Those are perceptible in the taste of wine, which drives consumer preference and, therefore, wine’s value in the marketplace. Geographical indications (GI) are recognized regulatory constructs formalizing and protecting the nexus between wine taste and the terroir generating it. Despite considering updates, GIs do not consider the nexus as a dynamic one and do not anticipate change, namely of climate. Being climate a fundamental feature of terroir, it strongly impacts wine characteristics, such as taste. According to IPCC[ii], many widespread, rapid and unprecedented changes of climate occurred, some being irreversible over hundreds to thousands of years. Climatic shifts and atmospheric-driven extreme events have been widely reported worldwide. Recent climatic trends are projected to strengthen in upcoming decades, whereas extremes are expected to increase in frequency and intensity, forcing wines away from GI definitions. Geographical shifts of viticultural suitability are projected, often moving into regions and countries different from current ones. Some authors propose adaptation in viticulture, winemaking and product innovation. We show evidence of climate changing wine characteristics in the Douro valley, home of 270-year-old Port GI. We discuss herein resist or adapt stances for when climate changes the nexus between terroir and wine characteristics. Using the MED-GOLD[iii] dashboard, a tool allowing for easy visual navigation of past and future climates, we demonstrate how policymakers can identify future moments, throughout the 21st century under different emission scenarios, when GI specifications will likely need updates (e.g., boundaries, varieties) to reduce climate-change impacts.

[i] International Organization for Vine and Wine, www.oiv.int

[ii] Intergovernmental Panel on Climate Change, https://www.ipcc.ch/

[iii] MED-GOLD H2020 Project, https://www.med-gold.eu/

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

António Graça1, Marta Teixeira1, Sara Silva1, João Antunes1, Ilaria Vigo2, Raul Marcos2, Konstantinos V. Varotsos3, Christos Giannakopoulos3, João A. Santos4, Natacha Fontes1 and Alessandro dell’Aquila5

1Sogrape Vinhos S.A., Avintes, Portugal 
2Barcelona Supercomputing Centre, Barcelona, Spain
3Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Greece
4UTAD, Vila Real, Portugal
5ENEA, Roma, Italy

Contact the author

Keywords

terroir, GI, climate, adaptation, resilience, risk

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Effect of terroir and winemaking protocol on the chemical and sensory profiles of Pinot Blanc wine

Wine research in the past years has mainly been focused on laboratory scale due to the possibility of controlling winemaking variables. Conversely, studies on wine quality in relation to the winemaking variables at the winery scale may be able to better account for the actual challenges encountered during wine production. Winemaking problems are recently arising from progressive changes in environmental conditions in relation to the terroir. It is important to realize that each wine region may have specific winemaking protocols and that winemakers often base their decisions on subjective, emotional, and empirical opinions. Due to all the above-mentioned issues, taking the correct decision in winemaking to achieve the desired goals may become even more challenging.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

New plant protein extracts as fining agents for red wines

AIM: Quinoa (Chenopodium quinoa) is a non-allergenic pseudocereal with a high protein content

Greek and Cypriot grape varieties as a sustainable solution to mitigate climate change

Aim: The aim of this report is to present evidence on the potential of Greek and Cypriot grape varieties to serve as a sustainable solution to mitigate climate change.

Methods and Results: The work provides a review of recent works involving Greek and Cypriot varieties’ performance under high temperatures and increased dryness.