GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Abstract

Context and purpose of the study – Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Material and methods – The model GrapeSim has been designed to simulate dynamics of carbon and nitrogen content in organs over multiple years. The model runs at a daily time-step and it decomposes the plant in several compartments; Leaf, Berry, Shoot (annual), Perennial organs (trunk and roots) and Storage. Carbon production is based on the radiation use efficiency approach and carbon is allocated to organs according to their growth demand. When carbon production surpasses organ demand, the remaining carbon is stored in the storage compartment, otherwise, carbon is remobilized from the storage to satisfy organs demand. Nitrogen fluxes are simulated analogously to carbon fluxes by considering a nitrogen demand to reach a specific concentration in each organ. GrapeSim has been calibrated using organ growth trajectories obtained from a pot experiment using ‘Sauvignon Blanc’ grafted onto ‘SO4’.

Results – GrapeSim provided an estimation of the carbon and nitrogen content in storage and their response to nitrogen fertilization, which is quite difficult to measure under field conditions. Several types and amounts of nitrogen were applied to evaluate the effect of nitrogen availability on plant growth, photosynthesis and yield and to validate specific outputs of the model. This work is an example of the relevance of combining field research with crop modelling to have a better understanding of vine responses to horticultural practices such as nitrogen fertilization.
Within the “NV2” project (that brings together 4 private companies, 1 technical institute and 3 public institutes), the next step will be to understand how nitrogen deficiency can affect subsequent reproductive development (bloom return and fruit set) using GrapeSim.

DOI:

Publication date: September 15, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carole BECEL1*, Rami ALBASHA1, Jérôme CHOPARD1, Damien Fumey1, Anaïs GUAUS1, Davide TARSITANO1, Gerardo LOPEZ1, Aurélie METAY2, Anne PELLEGRINO3

1 ITK, 9 Avenue de l’Europe, F-34830 Clapiers, France
2 UMR SYSTEM, 2 Place Viala, F-34060 Montpellier, France
3 UMR LEPSE, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

grapevine, carbon, nitrogen, growth, yield, fertilization, model

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.

TCA – A status report on South African cork closures

Cork taint decreases the commercial value of wine as tainted wines are rejected by consumers. Although other compounds in wine and cork can also be responsible for causing a taint, 2,4,6-trichloroanisole (TCA) is regarded as the primary cause of cork taint. As cork taint is often used in marketing campaigns against natural cork closures,

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.