GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Abstract

Context and purpose of the study – Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Material and methods – The model GrapeSim has been designed to simulate dynamics of carbon and nitrogen content in organs over multiple years. The model runs at a daily time-step and it decomposes the plant in several compartments; Leaf, Berry, Shoot (annual), Perennial organs (trunk and roots) and Storage. Carbon production is based on the radiation use efficiency approach and carbon is allocated to organs according to their growth demand. When carbon production surpasses organ demand, the remaining carbon is stored in the storage compartment, otherwise, carbon is remobilized from the storage to satisfy organs demand. Nitrogen fluxes are simulated analogously to carbon fluxes by considering a nitrogen demand to reach a specific concentration in each organ. GrapeSim has been calibrated using organ growth trajectories obtained from a pot experiment using ‘Sauvignon Blanc’ grafted onto ‘SO4’.

Results – GrapeSim provided an estimation of the carbon and nitrogen content in storage and their response to nitrogen fertilization, which is quite difficult to measure under field conditions. Several types and amounts of nitrogen were applied to evaluate the effect of nitrogen availability on plant growth, photosynthesis and yield and to validate specific outputs of the model. This work is an example of the relevance of combining field research with crop modelling to have a better understanding of vine responses to horticultural practices such as nitrogen fertilization.
Within the “NV2” project (that brings together 4 private companies, 1 technical institute and 3 public institutes), the next step will be to understand how nitrogen deficiency can affect subsequent reproductive development (bloom return and fruit set) using GrapeSim.

DOI:

Publication date: September 15, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carole BECEL1*, Rami ALBASHA1, Jérôme CHOPARD1, Damien Fumey1, Anaïs GUAUS1, Davide TARSITANO1, Gerardo LOPEZ1, Aurélie METAY2, Anne PELLEGRINO3

1 ITK, 9 Avenue de l’Europe, F-34830 Clapiers, France
2 UMR SYSTEM, 2 Place Viala, F-34060 Montpellier, France
3 UMR LEPSE, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

grapevine, carbon, nitrogen, growth, yield, fertilization, model

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

EFFECTS OF BIODYNAMIC VINEYARD MANAGEMENT ON GRAPE RIPENING MECHANISMS

Biodynamic agriculture, founded in 1924 by Rudolph Steiner, is a form of organic agriculture. Through a holistic approach, biodynamic agriculture seeks to preserve the diversity of agriculture and the existing interactions between the mineral world and the different components of the organic world. Biodynamic grape production involves the use of composts, herbal teas and mineral preparations such as 500, 501 and CBMT.
Several scientific studies have provided evidence on the effects of biodynamic farming on the soil, the plant and the wine. Numerous empirical opinions of wine growers support the existence of differences brought by such a management.

Resistance profiling of PIWI accessions: insights from Geisenheim university’s breeding program

Context and purpose of the study. Fungus-resistant grape varieties (PIWIs) represent a significant advancement toward more environmentally sustainable viticulture.

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.