GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Abstract

Context and purpose of the study – Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Material and methods – The model GrapeSim has been designed to simulate dynamics of carbon and nitrogen content in organs over multiple years. The model runs at a daily time-step and it decomposes the plant in several compartments; Leaf, Berry, Shoot (annual), Perennial organs (trunk and roots) and Storage. Carbon production is based on the radiation use efficiency approach and carbon is allocated to organs according to their growth demand. When carbon production surpasses organ demand, the remaining carbon is stored in the storage compartment, otherwise, carbon is remobilized from the storage to satisfy organs demand. Nitrogen fluxes are simulated analogously to carbon fluxes by considering a nitrogen demand to reach a specific concentration in each organ. GrapeSim has been calibrated using organ growth trajectories obtained from a pot experiment using ‘Sauvignon Blanc’ grafted onto ‘SO4’.

Results – GrapeSim provided an estimation of the carbon and nitrogen content in storage and their response to nitrogen fertilization, which is quite difficult to measure under field conditions. Several types and amounts of nitrogen were applied to evaluate the effect of nitrogen availability on plant growth, photosynthesis and yield and to validate specific outputs of the model. This work is an example of the relevance of combining field research with crop modelling to have a better understanding of vine responses to horticultural practices such as nitrogen fertilization.
Within the “NV2” project (that brings together 4 private companies, 1 technical institute and 3 public institutes), the next step will be to understand how nitrogen deficiency can affect subsequent reproductive development (bloom return and fruit set) using GrapeSim.

DOI:

Publication date: September 15, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carole BECEL1*, Rami ALBASHA1, Jérôme CHOPARD1, Damien Fumey1, Anaïs GUAUS1, Davide TARSITANO1, Gerardo LOPEZ1, Aurélie METAY2, Anne PELLEGRINO3

1 ITK, 9 Avenue de l’Europe, F-34830 Clapiers, France
2 UMR SYSTEM, 2 Place Viala, F-34060 Montpellier, France
3 UMR LEPSE, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

grapevine, carbon, nitrogen, growth, yield, fertilization, model

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

Market entry strategies in the U.S. alcohol distribution: The case of French wine exporters

This study examines the different strategies adopted by wine exporters located in France for penetrating international alcohol distribution networks in the U.S. market (and to a lesser extent the Canadian market). Grounded in the Business-to-Business (B2B) marketing literature (Ellegaard and Medlin, 2018), this study adopts a framework integrating a ‘Stakeholder’ approach for understanding the logics behind exporters’ strategies to penetrate the alcohol distribution networks (wholesalers, importers, alcohol monopolies).

An effective method for extracting high-quality RNA from grapevine

Grapevine (Vitis vinifera L.) is one of the most important economic crops in the world. Because of this importance, one finds widespread molecular genetic research on this species, an important element of which is high quality RNA.

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Environmental and yearly influences on four Sicilian grape clones under climate change challenges

By the end of this century, up to 90% of traditional viticulture regions in the Mediterranean, including Sicily, are projected to face extinction due to escalating climate challenges such as severe droughts, heatwaves, and unseasonal rains.