GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

The grapesim model: a model to better understand the complex interactions between carbon and nitrogen cycles in grapevines

Abstract

Context and purpose of the study – Nitrogen fertilization is an important practice to guarantee vineyards sustainability and performance over years, while ensuring berry quality. However, achieving a precise nitrogen fertilization to meet specific objectives of production is difficult. There is a lack of knowledge on the impact of nitrogen fertilizers (soil/foliar; organic/mineral) and different levels of fertilization on the interactions between carbon and nitrogen cycles within the vine. Crop models may be useful in that purpose because they can provide new insights of the effects of fertilization in carbon and nitrogen storage. The objective of this study is to build a model to simulate grapevine carbon and nitrogen content in vines to evaluate the impact of different fertilization strategies in vine growth and yield.

Material and methods – The model GrapeSim has been designed to simulate dynamics of carbon and nitrogen content in organs over multiple years. The model runs at a daily time-step and it decomposes the plant in several compartments; Leaf, Berry, Shoot (annual), Perennial organs (trunk and roots) and Storage. Carbon production is based on the radiation use efficiency approach and carbon is allocated to organs according to their growth demand. When carbon production surpasses organ demand, the remaining carbon is stored in the storage compartment, otherwise, carbon is remobilized from the storage to satisfy organs demand. Nitrogen fluxes are simulated analogously to carbon fluxes by considering a nitrogen demand to reach a specific concentration in each organ. GrapeSim has been calibrated using organ growth trajectories obtained from a pot experiment using ‘Sauvignon Blanc’ grafted onto ‘SO4’.

Results – GrapeSim provided an estimation of the carbon and nitrogen content in storage and their response to nitrogen fertilization, which is quite difficult to measure under field conditions. Several types and amounts of nitrogen were applied to evaluate the effect of nitrogen availability on plant growth, photosynthesis and yield and to validate specific outputs of the model. This work is an example of the relevance of combining field research with crop modelling to have a better understanding of vine responses to horticultural practices such as nitrogen fertilization.
Within the “NV2” project (that brings together 4 private companies, 1 technical institute and 3 public institutes), the next step will be to understand how nitrogen deficiency can affect subsequent reproductive development (bloom return and fruit set) using GrapeSim.

DOI:

Publication date: September 15, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Carole BECEL1*, Rami ALBASHA1, Jérôme CHOPARD1, Damien Fumey1, Anaïs GUAUS1, Davide TARSITANO1, Gerardo LOPEZ1, Aurélie METAY2, Anne PELLEGRINO3

1 ITK, 9 Avenue de l’Europe, F-34830 Clapiers, France
2 UMR SYSTEM, 2 Place Viala, F-34060 Montpellier, France
3 UMR LEPSE, 2 Place Viala, F-34060 Montpellier, France

Contact the author

Keywords

grapevine, carbon, nitrogen, growth, yield, fertilization, model

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evolution of the amino acids content through grape ripening: Effect of foliar application of methyl jasmonate with or without urea

The parameters that determine the grape quality, and therefore the optimal harvest time, suffer variations during berry ripening, related to climate change, with the widely known problem of the gap between technological and phenolic maturities. However, there are few studies about its incidence on grape nitrogen composition. For this reason, the use of an elicitor, methyl jasmonate (MeJ), alone or with urea, is proposed as a tool to reduce climatic decoupling, allowing to establish the harvest time in order to achieve the optimum grape quality. The aim was to study the effect of MeJ and MeJ+Urea foliar applications on the evolution of Tempranillo amino acids content throughout the grape maturation. Three treatments were foliarly applied, at veraison and 7 days later: control (water), MeJ (10 mM) and MeJ+Urea (10 mM+6 kg N/ha). Grape samples were taken at five stages of maturation: day before the first and second applications, 15 days after the second application (pre-harvest), harvest day, and 15 days after harvest (post-harvest). The amino acids analysis of the samples was carried out by HPLC. Results showed that the evolution of amino acids was similar regardless of the treatment; however, foliar applications influenced the nitrogen compounds content, i.e., there was no qualitative effect but quantitative one. Most of the amino acids reached their maximum concentration in pre-harvest, being higher in grapes from the treatments than in the control. In general, no differences in grape amino acids content were observed between MeJ and MeJ+Urea treatments. Foliar applications with MeJ and MeJ+Urea enhanced the grape amino acids content, without affecting their profile, helping to optimize their quality and allowing to establish a more complete grape ripening standard. Therefore, MeJ and MeJ+Urea foliar applications can be a simple agronomic practice, which has shown promising results in order to enhance the grape quality.

Exploring multisensory interactions through the study of astringency diversity of mono-varietal Italian red wines

According to the OIV Focus 2017 estimating the vine varieties distribution in the world, Italy is the richest grape producing country in terms of varieties.

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.

How to improve the mouthfeel of wines obtained by excessive tannin extraction

Red wines felt as astringent and bitter generally show high content of tannins due to grape phenolic compounds’ extraction in the maceration process. Among different enological practices, mannoproteins have been shown to improve the mouthfeel of red wines (1) and the color (2,3). In this work, we evaluated the effect of mannoproteins on the mouthfeel profile of Sangiovese wines obtained by excessive tannin extraction.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.