OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Abstract

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century. Yet, the differences in compound yield and nature between species remain poorly understood. Using a two-pronged approach of isotopic filiation and transcriptome analysis, this study endeavoured to shed new light on the utilisation of nitrogen sources by two wine-related yeast species, Saccharomyces cerevisiae Lalvin EC1118® (Lallemand) and Kluyveromyces marxianus IWBT Y885. 

The data showed that, although the order and intensity of uptake of nitrogen sources was broadly similar, those of ammonium and arginine differed. Furthermore, the utilisation of assimilated amino acids also differed significantly. While S. cerevisiae redistributed the nitrogen in these amino acids evenly for the production of other amino acids, K. marxianus clearly favoured specific amino acids. As for amino acids used as substrates for the production of aroma compounds, the fate of leucine and valine did not differ significantly between the two species. However, phenylalanine metabolism differed, and a larger proportion of phenylalanine was channelled through the Ehrlich pathway in K. marxianus, resulting in increased production of phenylethanol. Transcriptome data suggest that this shift can be explained by the higher expression of aromatic amino transferases in K. marxianus. Taken together, the data show that metabolic pathways are broadly conserved, but that individual nitrogen sources are not always assimilated and metabolised in identical ways. The study also provides new insights on the modulation of fermentative aroma profiles by yeast species of commercial interest.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Divol, Stephanie Rollero, Audrey Bloem, Anne Ortiz-Julien, Florian Bauer, Carole Camarasa

Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Nitrogen metabolism, Kluyveromyces marxianus, Saccharomyces cerevisiae, Fermentative aroma compounds 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Effect of non-wine Saccharomyces yeasts and bottle ageing on the release and generation of aromas in semi-synthetic Tempranillo wines

Explore the variability and contribution of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas of semi-synthetic Tempranillo wines, together with an in-depth study of the capacity of these strains to provide good fermentative and oenological qualities

The estimation of the clear-sky effective PAR resources in a mountain area

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Response of grapevine cv. “Tinta Roriz” (vitis vinifera L.) to moderate irrigation in the Douro region, Portugal

The behaviour of cv. “Tinta Roriz” (Vitis vinifera L.), was studied when moderate drip irrigation was applied from veraison to harvest. Field studies were conducted during three growing seasons

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.