OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Abstract

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century. Yet, the differences in compound yield and nature between species remain poorly understood. Using a two-pronged approach of isotopic filiation and transcriptome analysis, this study endeavoured to shed new light on the utilisation of nitrogen sources by two wine-related yeast species, Saccharomyces cerevisiae Lalvin EC1118® (Lallemand) and Kluyveromyces marxianus IWBT Y885. 

The data showed that, although the order and intensity of uptake of nitrogen sources was broadly similar, those of ammonium and arginine differed. Furthermore, the utilisation of assimilated amino acids also differed significantly. While S. cerevisiae redistributed the nitrogen in these amino acids evenly for the production of other amino acids, K. marxianus clearly favoured specific amino acids. As for amino acids used as substrates for the production of aroma compounds, the fate of leucine and valine did not differ significantly between the two species. However, phenylalanine metabolism differed, and a larger proportion of phenylalanine was channelled through the Ehrlich pathway in K. marxianus, resulting in increased production of phenylethanol. Transcriptome data suggest that this shift can be explained by the higher expression of aromatic amino transferases in K. marxianus. Taken together, the data show that metabolic pathways are broadly conserved, but that individual nitrogen sources are not always assimilated and metabolised in identical ways. The study also provides new insights on the modulation of fermentative aroma profiles by yeast species of commercial interest.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Divol, Stephanie Rollero, Audrey Bloem, Anne Ortiz-Julien, Florian Bauer, Carole Camarasa

Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Nitrogen metabolism, Kluyveromyces marxianus, Saccharomyces cerevisiae, Fermentative aroma compounds 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

How to resolve the lack acidity in wines by better understanding of the adequation of grape varietal-terroir: Negrette grape in the terroir of Côtes du Frontonnais

Le manque d’acidité des vins est un sujet préoccupant dans de nombreux vignobles car l’acidité est un facteur déterminant de la qualité des vins, en liaison avec la nutrition minérale de la vigne.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

Discriminant value of soil properties for terroir zoning

Environmental analysis (climate, vegetation, geomorfoloy-lanscape, lithology and soil) and its integration in a quality index taking the Appellation of Origin as the sole universe are used as general methodology for terroir zoning in Spain (Sotés and Gómez-Miguel, 1986-2005). This methodology is also applied to specific aspects of different Spanish Appellations of Origin (size, distribution and landscape peculiarities and vine occupation index).

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.