OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

Abstract

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century. Yet, the differences in compound yield and nature between species remain poorly understood. Using a two-pronged approach of isotopic filiation and transcriptome analysis, this study endeavoured to shed new light on the utilisation of nitrogen sources by two wine-related yeast species, Saccharomyces cerevisiae Lalvin EC1118® (Lallemand) and Kluyveromyces marxianus IWBT Y885. 

The data showed that, although the order and intensity of uptake of nitrogen sources was broadly similar, those of ammonium and arginine differed. Furthermore, the utilisation of assimilated amino acids also differed significantly. While S. cerevisiae redistributed the nitrogen in these amino acids evenly for the production of other amino acids, K. marxianus clearly favoured specific amino acids. As for amino acids used as substrates for the production of aroma compounds, the fate of leucine and valine did not differ significantly between the two species. However, phenylalanine metabolism differed, and a larger proportion of phenylalanine was channelled through the Ehrlich pathway in K. marxianus, resulting in increased production of phenylethanol. Transcriptome data suggest that this shift can be explained by the higher expression of aromatic amino transferases in K. marxianus. Taken together, the data show that metabolic pathways are broadly conserved, but that individual nitrogen sources are not always assimilated and metabolised in identical ways. The study also provides new insights on the modulation of fermentative aroma profiles by yeast species of commercial interest.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Benoit Divol, Stephanie Rollero, Audrey Bloem, Anne Ortiz-Julien, Florian Bauer, Carole Camarasa

Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

Contact the author

Keywords

Nitrogen metabolism, Kluyveromyces marxianus, Saccharomyces cerevisiae, Fermentative aroma compounds 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

Relations entre critères sensoriels et analytiques des vins et des vendanges de Cabernet franc issus de terroirs et de millésimes différents en Val de Loire. Essai de caractérisation de la typicité

En France, la notion de Terroir a largement contribué à la réputation de nombreux vignobles. Elle a permis aussi d’accentuer la sensibilité des consommateurs, à la notion d’origine d’un produit. L’avenir de nombreux vignobles français semble lié à la capacité à innover en produisant des vins de qualité possédant en plus une typicité, aspect sensoriel susceptible de s’affirmer comme un facteur de vente auprès des futurs clients éduqués sur le plan du goût.

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Validation of a high-throughput method for the quantification of volatile carbonyl compounds in wine and its use in accelerated ageing experiments

the aim of this study was the optimization and validation of a robust and comprehensive method for the determination of volatile carbonyl compounds (VCCs) in wines

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.