GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

Abstract

Context and purpose of the study – In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency. Carbon isotope ratio (δ13C) of grape must sugar has been investigated as an integrating marker related to water use efficiency and water status in grapevines. The present study was aimed to explore water use efficiency in several cultivars subjected to different irrigation regimes, in order to know those that were more efficient and subsequently develop specific watering protocols for each of them, according to sustainable production and quality goals.

Material and methods – This study was carried out in 2017 and 2018. Variety response of δ13C to different irrigation regime was assessed in a multivarietal vineyard. Grown on trellises, at a distance of 2.8m x 1.2m (row by vine spacing), the plants are trained to a single guyot system, with 110 Richter as rootstock. Orientation is 30oNE/210oSW and the vineyard is irrigated by a drip system with two drippers per vine-stock. Four treatments were considered: survival, 0.20 ET0, 0.25 ET0 and 0.30 ET0. Determination of the carbon isotope ratios of grape must was carried out by on-line analysis using a ThermoQuest Flash 1112 elemental analyser equipped with an autosampler and coupled to a Delta-Plus IRMS (ThermoQuest) through a ConFlo III interface (ThermoQuest). In addition to δ13C in must sugar, yield components and must quality parameters were determined for each treatment and variety.

Results – Irrigation promoted a decrease of carbon isotope ratio in must sugar. The relationship between δ13C and water volumes used in irrigation treatments was negative and moderately significant. Considering the data of two vintages together and treatment as a variable, the effect of irrigation regime in carbon isotope ratio was observed in all cases with significant differences ranging from -22.58 for T0 to -24.48 for T3, whereas in WUE only T0 (30.15 g/L) stood out from the rest (12.86 g/L, 10.84 g/L and 10.32 g/L for T1, T2 and T3 respectively). On the contrary, when grapevine variety was a variable, there were only significant differences in δ13C when considering vintages independently. It was in 2017, with values ranging from -23.52 for Airén to -24.69 for Moscatel de Grano Menudo. Regarding WUE, in neither of two vintages separately there were significant differences. Between δ13C and agronomic parameters there were some correlations with different significance levels. This study contributes to improving knowledge about what of the cultivars grown in the areaare more efficient from the water use point of view, and the irrigation regimes that would have to be established to achieve sustainable production, both quantitatively and qualitatively, with the minimum water volume.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Juan Luis CHACÓN*, Jesús MARTÍNEZ, Adela MENA

Instituto de la Vid y el Vino de Castilla-La Mancha (IVICAM), Tomelloso, Spain

Contact the author

Keywords

carbon isotope ratio, grapevine, irrigation, Vitis vinifera L., water use efficiency

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.

Typicité et terroir : importance relative du type de sol et du niveau de maturité dans la typologie sensorielle du vin

Le lien fonctionnel entre typicité et terroir a été étudié en prenant en compte deux dimensions importantes : le type de sol et la date de vendanges. Ces deux facteurs sont, à des degrés divers

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages.

Zoning of the Veneto region areas with Denomination of origin

To characterize in depth the enological productions according to the origin territories and to provide modern tools for the qualitative raising of the assorted typologies of wine produced, Veneto Agricoltura (the regional agency for the agriculture, forestry and food industry development), the Regional Government of Veneto (north-eastern Italy) and various Consortia of Producers have undertaken since 2002 a systematic classification of the viticultural territories by agro-ecological zoning to achieve a strategic project aimed to set Veneto as the first Italian region to have completed in a systematic and scientifically rigorous way the zoning of most of its Denomination of Origin areas.

Natural magnetic levitation for the storage of wine bottles

Wine storage ensuring the quality and correct aging is one of the issues that wineries, wine traders and consumers encounter after wine bottling.