GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

Abstract

Context and purpose of the study – In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency. Carbon isotope ratio (δ13C) of grape must sugar has been investigated as an integrating marker related to water use efficiency and water status in grapevines. The present study was aimed to explore water use efficiency in several cultivars subjected to different irrigation regimes, in order to know those that were more efficient and subsequently develop specific watering protocols for each of them, according to sustainable production and quality goals.

Material and methods – This study was carried out in 2017 and 2018. Variety response of δ13C to different irrigation regime was assessed in a multivarietal vineyard. Grown on trellises, at a distance of 2.8m x 1.2m (row by vine spacing), the plants are trained to a single guyot system, with 110 Richter as rootstock. Orientation is 30oNE/210oSW and the vineyard is irrigated by a drip system with two drippers per vine-stock. Four treatments were considered: survival, 0.20 ET0, 0.25 ET0 and 0.30 ET0. Determination of the carbon isotope ratios of grape must was carried out by on-line analysis using a ThermoQuest Flash 1112 elemental analyser equipped with an autosampler and coupled to a Delta-Plus IRMS (ThermoQuest) through a ConFlo III interface (ThermoQuest). In addition to δ13C in must sugar, yield components and must quality parameters were determined for each treatment and variety.

Results – Irrigation promoted a decrease of carbon isotope ratio in must sugar. The relationship between δ13C and water volumes used in irrigation treatments was negative and moderately significant. Considering the data of two vintages together and treatment as a variable, the effect of irrigation regime in carbon isotope ratio was observed in all cases with significant differences ranging from -22.58 for T0 to -24.48 for T3, whereas in WUE only T0 (30.15 g/L) stood out from the rest (12.86 g/L, 10.84 g/L and 10.32 g/L for T1, T2 and T3 respectively). On the contrary, when grapevine variety was a variable, there were only significant differences in δ13C when considering vintages independently. It was in 2017, with values ranging from -23.52 for Airén to -24.69 for Moscatel de Grano Menudo. Regarding WUE, in neither of two vintages separately there were significant differences. Between δ13C and agronomic parameters there were some correlations with different significance levels. This study contributes to improving knowledge about what of the cultivars grown in the areaare more efficient from the water use point of view, and the irrigation regimes that would have to be established to achieve sustainable production, both quantitatively and qualitatively, with the minimum water volume.

DOI:

Publication date: September 18, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Juan Luis CHACÓN*, Jesús MARTÍNEZ, Adela MENA

Instituto de la Vid y el Vino de Castilla-La Mancha (IVICAM), Tomelloso, Spain

Contact the author

Keywords

carbon isotope ratio, grapevine, irrigation, Vitis vinifera L., water use efficiency

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Stomatal abundance in grapevine: developmental genes, genotypic variation, and physiology

Grapevine cultivation is threatened by the global warming, which combines high temperatures and reduced rainfall, impacting in wine quality and even plant survival. Breeding for varieties resilient to these challenges must address plant traits such as tolerance to supraoptimal temperatures and optimized water use efficiency while minimizing productivity and quality losses. Stomatal abundance (SA) determines the maximum leaf potential for transpiration and thus water loss and cooling. Since SA results from a developmental process during leaf emergence and growth, knowledge on the genetic control of this process would provide specific targets for modification.

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Is the consumer ready for innovative fruit wines?

AIM: Wine consumption in the last fifteen years showed a decrease in Europe [1]. New alternatives of wines appeared on the market. Those beverages are obtained by blending wines and fruit juices or flavoring wines with artificial or natural aromas and have medium alcohol content (from 8 to 10.5%) [2]. Recently, an innovative fruit wine has been proposed obtained by co-fermenting grape must and kiwi juice [3] whose potential attractiveness to consumers should be exploited. However, differences in product acceptability and perception, as well as the individuals’ willingness to consume and pay could change in function of subjects socio-demographic characteristics. The target group selected is represented by young adults (18-35 years old) consumption groups.

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.

Functional characterization of grapevine MLO genes to define their roles in Powdery mildew susceptibility by CRISPR/Cas9 genome editing

Successful powdery mildew (PM) infection in plants relies on Mildew Resistance Locus O (MLO) genes, which encode susceptibility factors essential for fungal penetration. In Arabidopsis, loss-of-function mutations in three clade-V MLOs, AtMLO2, 6, and 12 confer complete resistance to PM infection. Since then, efforts are on to discover MLO genes contributing to PM susceptibility in many species to introduce mlo-based PM-resistance. Earlier studies in tomato and grapevine, using the RNAi approach, attributed PM susceptibility to SlMLO1, 5, and 8 and VvMLO3, 13, and 17, respectively indicating likely functional redundancy among MLOs.